test_rnn_cells.py 5.2 KB
Newer Older
F
Feiyu Chan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
paddle.framework.set_default_dtype("float64")

import numpy as np
import unittest

from rnn_numpy import SimpleRNNCell, LSTMCell, GRUCell
from convert import convert_params_for_cell


class TestSimpleRNNCell(unittest.TestCase):
    def __init__(self, bias=True, place="cpu"):
        super(TestSimpleRNNCell, self).__init__(methodName="runTest")
        self.bias = bias
        self.place = paddle.CPUPlace() if place == "cpu" \
            else paddle.CUDAPlace(0)

    def setUp(self):
        paddle.disable_static(self.place)
        rnn1 = SimpleRNNCell(16, 32, bias=self.bias)
        rnn2 = paddle.nn.SimpleRNNCell(
            16, 32, bias_ih_attr=self.bias, bias_hh_attr=self.bias)
        convert_params_for_cell(rnn1, rnn2)

        self.rnn1 = rnn1
        self.rnn2 = rnn2

    def test_with_initial_state(self):
        rnn1 = self.rnn1
        rnn2 = self.rnn2

        x = np.random.randn(4, 16)
        prev_h = np.random.randn(4, 32)

        y1, h1 = rnn1(x, prev_h)
50
        y2, h2 = rnn2(paddle.to_tensor(x), paddle.to_tensor(prev_h))
F
Feiyu Chan 已提交
51 52 53 54 55 56 57 58 59
        np.testing.assert_allclose(h1, h2.numpy(), atol=1e-8, rtol=1e-5)

    def test_with_zero_state(self):
        rnn1 = self.rnn1
        rnn2 = self.rnn2

        x = np.random.randn(4, 16)

        y1, h1 = rnn1(x)
60
        y2, h2 = rnn2(paddle.to_tensor(x))
F
Feiyu Chan 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
        np.testing.assert_allclose(h1, h2.numpy(), atol=1e-8, rtol=1e-5)

    def runTest(self):
        self.test_with_initial_state()
        self.test_with_zero_state()


class TestGRUCell(unittest.TestCase):
    def __init__(self, bias=True, place="cpu"):
        super(TestGRUCell, self).__init__(methodName="runTest")
        self.bias = bias
        self.place = paddle.CPUPlace() if place == "cpu" \
            else paddle.CUDAPlace(0)

    def setUp(self):
        paddle.disable_static(self.place)
        rnn1 = GRUCell(16, 32, bias=self.bias)
        rnn2 = paddle.nn.GRUCell(
            16, 32, bias_ih_attr=self.bias, bias_hh_attr=self.bias)
        convert_params_for_cell(rnn1, rnn2)

        self.rnn1 = rnn1
        self.rnn2 = rnn2

    def test_with_initial_state(self):
        rnn1 = self.rnn1
        rnn2 = self.rnn2

        x = np.random.randn(4, 16)
        prev_h = np.random.randn(4, 32)

        y1, h1 = rnn1(x, prev_h)
93
        y2, h2 = rnn2(paddle.to_tensor(x), paddle.to_tensor(prev_h))
F
Feiyu Chan 已提交
94 95 96 97 98 99 100 101 102
        np.testing.assert_allclose(h1, h2.numpy(), atol=1e-8, rtol=1e-5)

    def test_with_zero_state(self):
        rnn1 = self.rnn1
        rnn2 = self.rnn2

        x = np.random.randn(4, 16)

        y1, h1 = rnn1(x)
103
        y2, h2 = rnn2(paddle.to_tensor(x))
F
Feiyu Chan 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
        np.testing.assert_allclose(h1, h2.numpy(), atol=1e-8, rtol=1e-5)

    def runTest(self):
        self.test_with_initial_state()
        self.test_with_zero_state()


class TestLSTMCell(unittest.TestCase):
    def __init__(self, bias=True, place="cpu"):
        super(TestLSTMCell, self).__init__(methodName="runTest")
        self.bias = bias
        self.place = paddle.CPUPlace() if place == "cpu" \
            else paddle.CUDAPlace(0)

    def setUp(self):
        rnn1 = LSTMCell(16, 32, bias=self.bias)
        rnn2 = paddle.nn.LSTMCell(
            16, 32, bias_ih_attr=self.bias, bias_hh_attr=self.bias)
        convert_params_for_cell(rnn1, rnn2)

        self.rnn1 = rnn1
        self.rnn2 = rnn2

    def test_with_initial_state(self):
        rnn1 = self.rnn1
        rnn2 = self.rnn2

        x = np.random.randn(4, 16)
        prev_h = np.random.randn(4, 32)
        prev_c = np.random.randn(4, 32)

        y1, (h1, c1) = rnn1(x, (prev_h, prev_c))
        y2, (h2, c2) = rnn2(
137 138
            paddle.to_tensor(x),
            (paddle.to_tensor(prev_h), paddle.to_tensor(prev_c)))
F
Feiyu Chan 已提交
139 140 141 142 143 144 145 146 147 148
        np.testing.assert_allclose(h1, h2.numpy(), atol=1e-8, rtol=1e-5)
        np.testing.assert_allclose(c1, c2.numpy(), atol=1e-8, rtol=1e-5)

    def test_with_zero_state(self):
        rnn1 = self.rnn1
        rnn2 = self.rnn2

        x = np.random.randn(4, 16)

        y1, (h1, c1) = rnn1(x)
149
        y2, (h2, c2) = rnn2(paddle.to_tensor(x))
F
Feiyu Chan 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
        np.testing.assert_allclose(h1, h2.numpy(), atol=1e-8, rtol=1e-5)
        np.testing.assert_allclose(c1, c2.numpy(), atol=1e-8, rtol=1e-5)

    def runTest(self):
        self.test_with_initial_state()
        self.test_with_zero_state()


def load_tests(loader, tests, pattern):
    suite = unittest.TestSuite()
    devices = ["cpu", "gpu"] if paddle.fluid.is_compiled_with_cuda() \
        else ["cpu"]
    for bias in [True, False]:
        for device in devices:
            for test_class in [TestSimpleRNNCell, TestGRUCell, TestLSTMCell]:
                suite.addTest(test_class(bias, device))
    return suite