test_elementwise_nn_grad.py 12.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np

20
import paddle
21 22 23 24 25 26 27 28 29 30 31
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import paddle.fluid.core as core
import gradient_checker

from decorator_helper import prog_scope


class TestElementwiseMulDoubleGradCheck(unittest.TestCase):
    @prog_scope()
    def func(self, place):
T
tianshuo78520a 已提交
32
        # the shape of input variable should be clearly specified, not inlcude -1.
33
        shape = [2, 3, 4, 5]
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        y = layers.data('y', shape, False, dtype)
        x.persistable = True
        y.persistable = True
        out = layers.elementwise_mul(x, y)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        y_arr = np.random.uniform(-1, 1, shape).astype(dtype)

        gradient_checker.double_grad_check(
            [x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps)

    def test_grad(self):
49
        paddle.enable_static()
50 51 52 53 54 55 56 57 58 59
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestElementwiseMulBroadcastDoubleGradCheck(unittest.TestCase):
    @prog_scope()
    def func(self, place):
T
tianshuo78520a 已提交
60
        # the shape of input variable should be clearly specified, not inlcude -1.
61
        shape = [2, 3, 4, 5]
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        y = layers.data('y', shape[:-1], False, dtype)
        x.persistable = True
        y.persistable = True
        out = layers.elementwise_mul(x, y, axis=0)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        y_arr = np.random.uniform(-1, 1, shape[:-1]).astype(dtype)

        gradient_checker.double_grad_check(
            [x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps)

    def test_grad(self):
77
        paddle.enable_static()
78 79 80 81 82 83 84 85 86 87
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestElementwiseAddDoubleGradCheck(unittest.TestCase):
    @prog_scope()
    def func(self, place):
T
tianshuo78520a 已提交
88
        # the shape of input variable should be clearly specified, not inlcude -1.
89
        shape = [2, 3, 4, 5]
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        y = layers.data('y', shape, False, dtype)
        x.persistable = True
        y.persistable = True
        out = layers.elementwise_add(x, y)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        y_arr = np.random.uniform(-1, 1, shape).astype(dtype)

        gradient_checker.double_grad_check(
            [x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps)

    def test_grad(self):
105
        paddle.enable_static()
106 107 108 109 110 111 112 113 114 115
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestElementwiseAddBroadcastDoubleGradCheck(unittest.TestCase):
    @prog_scope()
    def func(self, place):
T
tianshuo78520a 已提交
116
        # the shape of input variable should be clearly specified, not inlcude -1.
117
        shape = [2, 3, 4, 5]
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        y = layers.data('y', shape[:-1], False, dtype)
        x.persistable = True
        y.persistable = True
        out = layers.elementwise_add(x, y, axis=0)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        y_arr = np.random.uniform(-1, 1, shape[:-1]).astype(dtype)

        gradient_checker.double_grad_check(
            [x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps)

    def test_grad(self):
133
        paddle.enable_static()
134 135 136 137 138 139 140 141
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestElementwiseSubDoubleGradCheck(unittest.TestCase):
142 143 144
    def subtract_wrapper(self, x):
        return paddle.subtract(x[0], x[1])

145 146
    @prog_scope()
    def func(self, place):
T
tianshuo78520a 已提交
147
        # the shape of input variable should be clearly specified, not inlcude -1.
148
        shape = [2, 3, 4, 5]
149 150 151 152 153 154 155 156 157 158 159 160 161
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        y = layers.data('y', shape, False, dtype)
        x.persistable = True
        y.persistable = True
        out = layers.elementwise_sub(x, y)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        y_arr = np.random.uniform(-1, 1, shape).astype(dtype)

        gradient_checker.double_grad_check(
            [x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps)
162 163 164 165 166
        gradient_checker.double_grad_check_for_dygraph(
            self.subtract_wrapper, [x, y],
            out,
            x_init=[x_arr, y_arr],
            place=place)
167 168

    def test_grad(self):
169
        paddle.enable_static()
170 171 172 173 174 175 176 177 178 179
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestElementwiseSubBroadcastDoubleGradCheck(unittest.TestCase):
    @prog_scope()
    def func(self, place):
T
tianshuo78520a 已提交
180
        # the shape of input variable should be clearly specified, not inlcude -1.
181
        shape = [2, 3, 4, 5]
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        y = layers.data('y', shape[:-1], False, dtype)
        x.persistable = True
        y.persistable = True
        out = layers.elementwise_sub(x, y, axis=0)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        y_arr = np.random.uniform(-1, 1, shape[:-1]).astype(dtype)

        gradient_checker.double_grad_check(
            [x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps)

    def test_grad(self):
197
        paddle.enable_static()
198 199 200 201 202 203 204 205
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestElementwiseDivDoubleGradCheck(unittest.TestCase):
206 207 208
    def divide_wrapper(self, x):
        return paddle.divide(x[0], x[1])

209 210
    @prog_scope()
    def func(self, place):
T
tianshuo78520a 已提交
211
        # the shape of input variable should be clearly specified, not inlcude -1.
212
        shape = [2, 3, 4, 5]
213 214 215 216 217 218 219 220 221 222 223 224 225 226
        eps = 0.0001
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        y = layers.data('y', shape, False, dtype)
        x.persistable = True
        y.persistable = True
        out = layers.elementwise_div(x, y, axis=0)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        y_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        y_arr[np.abs(y_arr) < 0.005] = 0.02

        gradient_checker.double_grad_check(
            [x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps, atol=1e-3)
227 228 229 230 231 232
        gradient_checker.double_grad_check_for_dygraph(
            self.divide_wrapper, [x, y],
            out,
            x_init=[x_arr, y_arr],
            place=place,
            atol=1e-3)
233 234

    def test_grad(self):
235
        paddle.enable_static()
236 237 238 239 240 241 242 243 244 245
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestElementwiseDivBroadcastDoubleGradCheck(unittest.TestCase):
    @prog_scope()
    def func(self, place):
T
tianshuo78520a 已提交
246
        # the shape of input variable should be clearly specified, not inlcude -1.
247
        shape = [2, 3, 4, 5]
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
        eps = 0.0001
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        y = layers.data('y', shape[1:-1], False, dtype)
        x.persistable = True
        y.persistable = True
        out = layers.elementwise_div(x, y, axis=1)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        y_arr = np.random.uniform(-1, 1, shape[1:-1]).astype(dtype)
        y_arr[np.abs(y_arr) < 0.005] = 0.02

        gradient_checker.double_grad_check(
            [x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps, atol=1e-3)

    def test_grad(self):
264
        paddle.enable_static()
265 266 267 268 269 270 271
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
class TestElementwiseAddTripleGradCheck(unittest.TestCase):
    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        shape = [2, 3, 4, 5]
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        y = layers.data('y', shape, False, dtype)
        x.persistable = True
        y.persistable = True
        out = layers.elementwise_add(x, y)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        y_arr = np.random.uniform(-1, 1, shape).astype(dtype)

        gradient_checker.triple_grad_check(
            [x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps)

    def test_grad(self):
292
        paddle.enable_static()
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestElementwiseAddBroadcastTripleGradCheck(unittest.TestCase):
    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        shape = [2, 3, 4, 5]
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        y = layers.data('y', shape[:-1], False, dtype)
        x.persistable = True
        y.persistable = True
        out = layers.elementwise_add(x, y, axis=0)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        y_arr = np.random.uniform(-1, 1, shape[:-1]).astype(dtype)

        gradient_checker.triple_grad_check(
            [x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps)

    def test_grad(self):
320
        paddle.enable_static()
321 322 323 324 325 326 327
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


328
class TestElementwiseMulTripleGradCheck(unittest.TestCase):
329 330 331
    def multiply_wrapper(self, x):
        return paddle.multiply(x[0], x[1])

332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        shape = [2, 3, 4, 5]
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        y = layers.data('y', shape, False, dtype)
        x.persistable = True
        y.persistable = True
        out = layers.elementwise_mul(x, y)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        y_arr = np.random.uniform(-1, 1, shape).astype(dtype)

        gradient_checker.triple_grad_check(
            [x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps)
349 350 351 352 353
        gradient_checker.triple_grad_check_for_dygraph(
            self.multiply_wrapper, [x, y],
            out,
            x_init=[x_arr, y_arr],
            place=place)
354 355

    def test_grad(self):
356
        paddle.enable_static()
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestElementwiseMulBroadcastTripleGradCheck(unittest.TestCase):
    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        shape = [2, 3, 4, 5]
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        y = layers.data('y', shape[:-1], False, dtype)
        x.persistable = True
        y.persistable = True
        out = layers.elementwise_add(x, y, axis=0)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        y_arr = np.random.uniform(-1, 1, shape[:-1]).astype(dtype)

        gradient_checker.triple_grad_check(
            [x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps)

    def test_grad(self):
384
        paddle.enable_static()
385 386 387 388 389 390 391
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


392 393
if __name__ == "__main__":
    unittest.main()