test_one_hot_v2_op.py 5.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
16

17
import numpy as np
18
from eager_op_test import OpTest
19

20
import paddle
21 22
from paddle import fluid
from paddle.fluid import core
23 24


25 26 27 28
def one_hot_wrapper(x, depth_tensor, **keargs):
    return paddle.nn.functional.one_hot(x, depth_tensor)


29 30 31
class TestOneHotOp(OpTest):
    def setUp(self):
        self.op_type = 'one_hot_v2'
32 33
        self.python_api = one_hot_wrapper
        self.python_out_sig = ['Out']
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
        depth = 10
        depth_np = np.array(10).astype('int32')
        dimension = 12
        x_lod = [[4, 1, 3, 3]]
        x = [np.random.randint(0, depth - 1) for i in range(sum(x_lod[0]))]
        x = np.array(x).astype('int32').reshape([sum(x_lod[0])])

        out = np.zeros(shape=(np.product(x.shape), depth)).astype('float32')

        for i in range(np.product(x.shape)):
            out[i, x[i]] = 1.0

        self.inputs = {'X': (x, x_lod), 'depth_tensor': depth_np}
        self.attrs = {'dtype': int(core.VarDesc.VarType.FP32)}
        self.outputs = {'Out': (out, x_lod)}

    def test_check_output(self):
51
        self.check_output(check_cinn=True)
52 53 54 55 56


class TestOneHotOp_attr(OpTest):
    def setUp(self):
        self.op_type = 'one_hot_v2'
57
        self.python_api = one_hot_wrapper
58
        depth = 10
59
        depth_np = np.array(10).astype('int32')
60 61 62 63 64
        dimension = 12
        x_lod = [[4, 1, 3, 3]]
        x = [np.random.randint(0, depth - 1) for i in range(sum(x_lod[0]))]
        x = np.array(x).astype('int32').reshape([sum(x_lod[0]), 1])

65 66 67
        out = np.zeros(shape=(np.product(x.shape[:-1]), 1, depth)).astype(
            'float32'
        )
68 69 70 71

        for i in range(np.product(x.shape)):
            out[i, 0, x[i]] = 1.0

72
        self.inputs = {'X': (x, x_lod), 'depth_tensor': depth_np}
73 74 75 76
        self.attrs = {'dtype': int(core.VarDesc.VarType.FP32), 'depth': depth}
        self.outputs = {'Out': (out, x_lod)}

    def test_check_output(self):
77
        self.check_output(check_cinn=True)
78 79 80 81 82


class TestOneHotOp_default_dtype(OpTest):
    def setUp(self):
        self.op_type = 'one_hot_v2'
83
        self.python_api = one_hot_wrapper
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
        depth = 10
        depth_np = np.array(10).astype('int32')
        dimension = 12
        x_lod = [[4, 1, 3, 3]]
        x = [np.random.randint(0, depth - 1) for i in range(sum(x_lod[0]))]
        x = np.array(x).astype('int32').reshape([sum(x_lod[0])])

        out = np.zeros(shape=(np.product(x.shape), depth)).astype('float32')

        for i in range(np.product(x.shape)):
            out[i, x[i]] = 1.0

        self.inputs = {'X': (x, x_lod), 'depth_tensor': depth_np}
        self.attrs = {}
        self.outputs = {'Out': (out, x_lod)}

    def test_check_output(self):
101
        self.check_output(check_cinn=True)
102 103 104 105 106


class TestOneHotOp_default_dtype_attr(OpTest):
    def setUp(self):
        self.op_type = 'one_hot_v2'
107
        self.python_api = one_hot_wrapper
108
        depth = 10
109
        depth_np = np.array(depth).astype('int32')
110 111 112 113 114
        dimension = 12
        x_lod = [[4, 1, 3, 3]]
        x = [np.random.randint(0, depth - 1) for i in range(sum(x_lod[0]))]
        x = np.array(x).astype('int32').reshape([sum(x_lod[0]), 1])

115 116 117
        out = np.zeros(shape=(np.product(x.shape[:-1]), 1, depth)).astype(
            'float32'
        )
118 119 120 121 122 123 124 125 126

        for i in range(np.product(x.shape)):
            out[i, 0, x[i]] = 1.0

        self.inputs = {'X': (x, x_lod)}
        self.attrs = {'depth': depth}
        self.outputs = {'Out': (out, x_lod)}

    def test_check_output(self):
H
hong 已提交
127
        self.check_output()
128 129 130 131 132 133 134 135


class TestOneHotOpApi(unittest.TestCase):
    def test_api(self):
        depth = 10
        self._run(depth)

    def test_api_with_depthTensor(self):
136
        depth = paddle.assign(np.array([10], dtype=np.int32))
137 138 139 140
        self._run(depth)

    def test_api_with_dygraph(self):
        depth = 10
141 142 143
        label = np.array(
            [np.random.randint(0, depth - 1) for i in range(6)]
        ).reshape([6, 1])
144
        with fluid.dygraph.guard():
H
hong 已提交
145
            one_hot_label = paddle.nn.functional.one_hot(
146 147
                fluid.dygraph.to_variable(label), depth
            )
148 149 150
            one_hot_label = paddle.nn.functional.one_hot(
                paddle.to_tensor(label), depth
            )
H
hong 已提交
151

152
    def _run(self, depth):
G
GGBond8488 已提交
153 154
        label = paddle.static.data(name="label", shape=[-1, 1], dtype="int64")
        label.desc.set_need_check_feed(False)
155
        one_hot_label = paddle.nn.functional.one_hot(x=label, num_classes=depth)
156 157

        place = fluid.CPUPlace()
158 159 160
        label_data = np.array(
            [np.random.randint(0, 10 - 1) for i in range(6)]
        ).reshape([6, 1])
161 162 163

        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
164 165 166 167 168 169 170
        ret = exe.run(
            feed={
                'label': label_data,
            },
            fetch_list=[one_hot_label],
            return_numpy=False,
        )
171 172


173 174 175 176 177
class BadInputTestOnehotV2(unittest.TestCase):
    def test_error(self):
        with fluid.program_guard(fluid.Program()):

            def test_bad_x():
G
GGBond8488 已提交
178
                label = paddle.static.data(
179
                    name="label",
G
GGBond8488 已提交
180
                    shape=[-1, 4],
181 182
                    dtype="float32",
                )
G
GGBond8488 已提交
183
                label.desc.set_need_check_feed(False)
184 185 186
                one_hot_label = paddle.nn.functional.one_hot(
                    x=label, num_classes=4
                )
187 188 189 190

            self.assertRaises(TypeError, test_bad_x)


191
if __name__ == '__main__':
192
    paddle.enable_static()
193
    unittest.main()