binary.py 5.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from paddle import _C_ops
16
from paddle.fluid.framework import dygraph_only
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143

__all__ = []


@dygraph_only
def matmul(x, y, name=None):
    """
    Warning:    
        This API is only used from ``CUDA 11.0`` .

    Applies matrix multiplication of two Tensors. 
    
    The supported input/output Tensor layout are as follows:
    
    Note:
        x[SparseCsrTensor] @ y[SparseCsrTensor] -> out[SparseCsrTensor]
        x[SparseCsrTensor] @ y[DenseTensor] -> out[DenseTensor]
        x[SparseCooTensor] @ y[SparseCooTensor] -> out[SparseCooTensor]
        x[SparseCooTensor] @ y[DenseTensor] -> out[DenseTensor]

    It supports backward propagation.

    Dimensions `x` and `y` must be >= 2D. Automatic broadcasting of Tensor is not supported.
    the shape of `x` should be `[*, M, K]` , and the shape of `y` should be `[*, K, N]` , where `*` 
    is zero or more batch dimensions.

    Args:
        x (Tensor): The input tensor. It can be SparseCooTensor/SparseCsrTensor. The data type can be float32 or float64.
        y (Tensor): The input tensor. It can be SparseCooTensor/SparseCsrTensor/DenseTensor. The data type can be float32 or float64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
    
    Returns:
        Tensor: Its layout is determined by that of `x` and `y` .

    Examples:

        .. code-block:: python

            import paddle
            from paddle.fluid.framework import _test_eager_guard 
            paddle.seed(100)

            # csr @ dense -> dense

            with _test_eager_guard():         
                crows = [0, 2, 3, 5]
                cols = [1, 3, 2, 0, 1]
                values = [1., 2., 3., 4., 5.]
                dense_shape = [3, 4]
                csr = paddle.incubate.sparse.sparse_csr_tensor(crows, cols, values, dense_shape)
                # Tensor(shape=[3, 4], dtype=paddle.float32, place=Place(gpu:0), stop_gradient=True, 
                #        crows=[0, 2, 3, 5], 
                #        cols=[1, 3, 2, 0, 1], 
                #        values=[1., 2., 3., 4., 5.])
                dense = paddle.randn([4, 3])
                
                out = paddle.incubate.sparse.matmul(csr, dense)
                # Tensor(shape=[3, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
                #        [[-1.94294846 , -3.33990622 ,  0.62359387 ],
                #         [-4.12815523 ,  3.46535444 , -3.27413893 ],
                #         [-0.15209436 , -19.23207283, -3.35593438 ]])

    """
    return _C_ops.final_state_sparse_matmul(x, y)


@dygraph_only
def masked_matmul(x, y, mask, name=None):
    """
    Warning:    
        This API is only used from ``CUDA 11.3`` .

    Applies matrix multiplication of two Dense Tensors. 
    
    The supported input/output Tensor layout are as follows:
    
    Note:
        x[DenseTensor] @ y[DenseTensor] * mask[SparseCooTensor] -> out[SparseCooTensor]
        x[DenseTensor] @ y[DenseTensor] * mask[SparseCsrTensor] -> out[SparseCsrTensor]

    It supports backward propagation.

    Dimensions `x` and `y` must be  >= 2D. Automatic broadcasting of Tensor is not supported.
    the shape of `x` should be `[*, M, K]` , and the shape of `y` should be `[*, K, N]` , and the shape of `mask` should be `[*, M, N]` ,
    where `*` is zero or more batch dimensions.

    Args:
        x (Tensor): The input tensor. It is DenseTensor. The data type can be float32 or float64.
        y (Tensor): The input tensor. It is DenseTensor. The data type can be float32 or float64.
        mask (Tensor): The mask tensor, which can be SparseCooTensor/SparseCsrTensor. It specify sparse coordinates. The data type can be float32 or float64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: SparseCoo or SparseCsr, which is determined by that of `mask` .

    Examples:

        .. code-block:: python

            import paddle
            from paddle.fluid.framework import _test_eager_guard
            paddle.seed(100)

            # dense @ dense * csr_mask -> csr

            with _test_eager_guard():
                crows = [0, 2, 3, 5]
                cols = [1, 3, 2, 0, 1]
                values = [1., 2., 3., 4., 5.]
                dense_shape = [3, 4]
                mask = paddle.incubate.sparse.sparse_csr_tensor(crows, cols, values, dense_shape)
                # Tensor(shape=[3, 4], dtype=paddle.float32, place=Place(gpu:0), stop_gradient=True,
                #       crows=[0, 2, 3, 5],
                #       cols=[1, 3, 2, 0, 1],
                #       values=[1., 2., 3., 4., 5.])

                x = paddle.rand([3, 5])
                y = paddle.rand([5, 4])

                out = paddle.incubate.sparse.masked_matmul(x, y, mask)
                # Tensor(shape=[3, 4], dtype=paddle.float32, place=Place(gpu:0), stop_gradient=True, 
                #        crows=[0, 2, 3, 5], 
                #        cols=[1, 3, 2, 0, 1], 
                #        values=[0.98986477, 0.97800624, 1.14591956, 0.68561077, 0.94714981])

    """
    return _C_ops.final_state_sparse_masked_matmul(x, y, mask)