dist_default.py 19.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License

15
from .common import DistributedOperatorImplContainer
16
from .common import DistributedOperatorImpl
17
from .common import register_distributed_operator_impl_container
J
JZ-LIANG 已提交
18
from .common import register_distributed_operator_impl, is_parameter_related
19 20 21 22 23 24
from ..utils import is_dim_shard
from ..utils import is_dim_replicate
from ..utils import is_valid_list_index
from ..utils import compute_compatible_dim_mapping
from ..utils import compute_compatible_dims_mapping
from ..utils import compute_compatible_and_update_dim_mapping
25
from ..utils import set_dist_op_desc_original_id
26
from ..dist_attribute import OperatorDistributedAttribute
27 28 29 30 31
from paddle.fluid import core, unique_name
from paddle.fluid.framework import in_dygraph_mode
from paddle.fluid.framework import Program, Parameter, Variable, program_guard
from paddle.fluid.data_feeder import check_variable_and_dtype, check_dtype
from paddle.distributed.fleet.meta_optimizers.common import OpRole, OP_ROLE_KEY, OP_ROLE_VAR_KEY
32
from ..process_group import new_process_group
33 34
from ..utils import _get_comm_group, _get_corresponding_rank

35 36
__op_not_need_param_init__ = ["while", "cond"]

37

38
class DistributedDefault(DistributedOperatorImplContainer):
39 40
    def __init__(self, op_type):
        super(DistributedDefault, self).__init__(op_type)
41 42


43
register_distributed_operator_impl_container(DistributedDefault("default"))
44 45


46
# Replicated Default
47 48
class DistributedDefaultImpl0(DistributedOperatorImpl):
    def __init__(self, name):
49
        super(DistributedDefaultImpl0, self).__init__(name)
50 51 52
        self._forward_implemented = True
        self._backward_implemented = True

53
    def is_input_compatible(self, dist_op):
54 55 56 57 58
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
        for arg_name in op_desc.input_arg_names():
            serial_tensor = dist_op.get_serial_input(arg_name)
            dims_mapping = op_dist_attr.get_input_dims_mapping(arg_name)
59 60 61 62 63 64 65
            if serial_tensor.is_parameter:
                for mapping in dims_mapping:
                    if mapping != -1:
                        return False
                # continue
                # if len(dims_mapping) < 1:
                #     continue
66 67 68 69 70
            if len(dims_mapping) > 1:
                for mapping in dims_mapping[1:]:
                    if mapping != -1:
                        return False
        return True
71

72
    def is_output_compatible(self, dist_op):
73 74 75 76 77 78 79 80 81
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
        output_names = op_desc.output_names()
        xshape_arg_names = []
        if "XShape" in output_names:
            xshape_arg_names = op_desc.output("XShape")
        for arg_name in op_desc.output_arg_names():
            serial_tensor = dist_op.get_serial_output(arg_name)
            dims_mapping = op_dist_attr.get_output_dims_mapping(arg_name)
82 83 84 85 86 87 88
            if serial_tensor.is_parameter:
                for mapping in dims_mapping:
                    if mapping != -1:
                        return False
                # continue
                # if len(dims_mapping) < 1:
                #     continue
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
            if arg_name not in xshape_arg_names:
                if len(dims_mapping) > 1:
                    for mapping in dims_mapping[1:]:
                        if mapping != -1:
                            return False
            else:
                if dims_mapping[0] != -1:
                    return False
                if len(dims_mapping) > 2:
                    for mapping in dims_mapping[2:]:
                        if mapping != -1:
                            return False
        return True

    def is_auto_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
        batch_dim_mappings = []
        # Check input compatibility
        for arg_name in op_desc.input_arg_names():
            serial_tensor = dist_op.get_serial_input(arg_name)
            if serial_tensor.is_parameter:
                continue
            dims_mapping = op_dist_attr.get_input_dims_mapping(arg_name)
            if len(dims_mapping) > 1:
                for mapping in dims_mapping[1:]:
                    if mapping != -1:
                        return False
117 118
            if len(dims_mapping) >= 1:
                batch_dim_mappings.append(dims_mapping[0])
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134

        # Check output compatibility
        output_names = op_desc.output_names()
        xshape_arg_names = []
        if "XShape" in output_names:
            xshape_arg_names = op_desc.output("XShape")
        for arg_name in op_desc.output_arg_names():
            serial_tensor = dist_op.get_serial_output(arg_name)
            if serial_tensor.is_parameter:
                continue
            dims_mapping = op_dist_attr.get_output_dims_mapping(arg_name)
            if arg_name not in xshape_arg_names:
                if len(dims_mapping) > 1:
                    for mapping in dims_mapping[1:]:
                        if mapping != -1:
                            return False
135 136
                if len(dims_mapping) >= 1:
                    batch_dim_mappings.append(dims_mapping[0])
137 138 139 140 141 142 143
            else:
                if dims_mapping[0] != -1:
                    return False
                if len(dims_mapping) > 2:
                    for mapping in dims_mapping[2:]:
                        if mapping != -1:
                            return False
144 145
                if len(dims_mapping) >= 2:
                    batch_dim_mappings.append(dims_mapping[1])
146 147 148 149 150 151 152

        # Check batch dim mapping compatibility
        if not all(batch_dim_mappings[0] == dim_mapping
                   for dim_mapping in batch_dim_mappings):
            return False

        return True
153

154
    def update_dims_mapping(self, dist_op):
155 156 157 158
        changed = False
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
        # The following statement will be replaced by a more elegent way
159 160 161
        if op_desc.type() == "shape" \
            or op_desc.type() == "slice" \
                or op_desc.type() == "while":
162 163 164 165 166 167 168 169 170 171 172
            return False
        output_names = op_desc.output_names()
        xshape_arg_names = []
        if "XShape" in output_names:
            xshape_arg_names = op_desc.output("XShape")
        batch_dim_mappings = []
        for arg_name in op_desc.input_arg_names():
            serial_tensor = dist_op.get_serial_input(arg_name)
            if serial_tensor.is_parameter:
                continue
            dims_mapping = op_dist_attr.get_input_dims_mapping(arg_name)
173 174
            if len(dims_mapping) >= 1:
                batch_dim_mappings.append(dims_mapping[0])
175 176 177 178 179 180
        for arg_name in op_desc.output_arg_names():
            serial_tensor = dist_op.get_serial_output(arg_name)
            if serial_tensor.is_parameter:
                continue
            dims_mapping = op_dist_attr.get_output_dims_mapping(arg_name)
            if arg_name not in xshape_arg_names:
181 182
                if len(dims_mapping) >= 1:
                    batch_dim_mappings.append(dims_mapping[0])
183 184 185
            else:
                batch_dim_mappings.append(dims_mapping[1])

186 187 188
        if not batch_dim_mappings:
            return changed

189 190 191 192 193 194 195 196
        compatible_dim_mapping = compute_compatible_dim_mapping(
            batch_dim_mappings)
        assert compatible_dim_mapping is not None, "There is no compatible dim mapping."
        for arg_name in op_desc.input_arg_names():
            serial_tensor = dist_op.get_serial_input(arg_name)
            if serial_tensor.is_parameter:
                continue
            dims_mapping = op_dist_attr.get_input_dims_mapping(arg_name)
197 198
            if len(dims_mapping
                   ) >= 1 and compatible_dim_mapping != dims_mapping[0]:
199 200 201 202 203 204 205 206
                dims_mapping[0] = compatible_dim_mapping
                changed = True
        for arg_name in op_desc.output_arg_names():
            serial_tensor = dist_op.get_serial_output(arg_name)
            if serial_tensor.is_parameter:
                continue
            dims_mapping = op_dist_attr.get_output_dims_mapping(arg_name)
            if arg_name not in xshape_arg_names:
207 208
                if len(dims_mapping
                       ) >= 1 and compatible_dim_mapping != dims_mapping[0]:
209 210 211
                    dims_mapping[0] = compatible_dim_mapping
                    changed = True
            else:
212 213
                if len(dims_mapping
                       ) >= 2 and compatible_dim_mapping != dims_mapping[1]:
214 215 216 217
                    dims_mapping[1] = compatible_dim_mapping
                    changed = True

        return changed
218 219 220 221

    @staticmethod
    def forward(ctx, *args, **kwargs):

222
        dist_op_context = ctx.dist_op_context
223 224 225 226
        main_block = dist_op_context.work_block
        startup_block = dist_op_context.startup_block
        src_op = dist_op_context.cur_src_op
        rank_id = dist_op_context.rank_id
227

228
        # check validation of inputs / outputs
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
        for input_name in src_op.desc.input_names():
            assert input_name in kwargs, "input [{}] is not given".format(
                input_name)
            assert len(kwargs[input_name]) == len(
                src_op.desc.input(input_name)
            ), "number of tensor for input [{}] is not match".format(input_name)
        for output_name in src_op.desc.output_names():
            assert output_name in kwargs, "input [{}] is not given".format(
                output_name)
            assert len(kwargs[output_name]) == len(
                src_op.desc.output(output_name)
            ), "number of tensor for input [{}] is not match".format(
                output_name)

        # replicate op in dist program
        dist_op_desc = main_block.desc.append_op()
        dist_op_desc.copy_from(src_op.desc)
246
        set_dist_op_desc_original_id(dist_op_desc, src_op.desc, ctx)
247 248 249 250 251 252 253 254
        for input_name in src_op.desc.input_names():
            dist_op_desc.set_input(input_name, kwargs[input_name])
        for output_name in src_op.desc.output_names():
            dist_op_desc.set_output(output_name, kwargs[output_name])

        main_block._sync_with_cpp()

        # param initialization sync
255 256 257
        if src_op.type in __op_not_need_param_init__:
            return

258 259 260
        for varname in dist_op_desc.input_arg_names():
            if startup_block.has_var(varname) and startup_block.var(
                    varname
261 262
            ).is_parameter and varname not in dist_op_context.already_init_sync_vars:
                dist_op_context.already_init_sync_vars.add(varname)
263
                param = startup_block.var(varname)
264 265 266
                param_dist_attr = ctx.get_tensor_dist_attr_for_program(param)
                process_mesh = param_dist_attr.process_mesh
                dims_mapping = param_dist_attr.dims_mapping
267 268

                # FIXME (JZ-LIANG) Remove this hack to support any op mesh group for Pipeline Parallelism
269 270 271
                if rank_id not in process_mesh.processes:
                    rank_id = _get_corresponding_rank(ctx, process_mesh,
                                                      rank_id)
272

273
                # NOTE all not splited axis should be presented in mesh
274 275 276 277
                for axis, size in enumerate(process_mesh.topology):
                    if size <= 1 or axis in dims_mapping:
                        pass
                    else:
278 279 280
                        group_ranks = _get_comm_group(process_mesh.processes,
                                                      process_mesh.topology,
                                                      axis, rank_id)
281 282 283 284 285 286 287 288 289 290 291 292 293 294
                        sync_group = new_process_group(group_ranks)

                        new_op = startup_block.append_op(
                            type='c_broadcast',
                            inputs={'X': param},
                            outputs={'Out': param},
                            attrs={
                                'ring_id': sync_group.id,
                                'root': 0,
                                'use_calc_stream': True,
                                OP_ROLE_KEY: OpRole.Forward
                            })

                        # set distributed attribute
295 296
                        op_attr = OperatorDistributedAttribute()
                        op_attr.process_mesh = process_mesh
297 298 299
                        op_attr.set_output_dims_mapping(param.name,
                                                        dims_mapping)
                        op_attr.set_input_dims_mapping(param.name, dims_mapping)
300
                        ctx.set_op_dist_attr_for_program(new_op, op_attr)
301 302 303 304 305 306 307

                startup_block._sync_with_cpp()

    @staticmethod
    def backward(ctx, *args, **kwargs):

        # by now the backward function only insert the gradient allreduce for dist op itself
308
        dist_op_context = ctx.dist_op_context
309 310
        main_block = dist_op_context.work_block
        backward_op = dist_op_context.cur_src_op
311
        dist_attr = ctx.get_op_dist_attr_for_program(backward_op)
312 313
        assert dist_attr is not None, "backward op [{}] don't have dist attribute !".format(
            str(backward_op))
314
        rank_id = dist_op_context.rank_id
315

316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
        # check validation of inputs / outputs
        for input_name in backward_op.desc.input_names():
            assert input_name in kwargs, "input [{}] is not given".format(
                input_name)
            assert len(kwargs[input_name]) == len(
                backward_op.desc.input(input_name)
            ), "number of tensor for input [{}] is not match".format(input_name)
        for output_name in backward_op.desc.output_names():
            assert output_name in kwargs, "input [{}] is not given".format(
                output_name)
            assert len(kwargs[output_name]) == len(
                backward_op.desc.output(output_name)
            ), "number of tensor for input [{}] is not match".format(
                output_name)

        # replicate op in dist program
        dist_op_desc = main_block.desc.append_op()
        dist_op_desc.copy_from(backward_op.desc)
334 335
        # Refer to the related dist op
        set_dist_op_desc_original_id(dist_op_desc, backward_op.desc, ctx)
336 337 338 339 340 341 342
        for input_name in backward_op.desc.input_names():
            dist_op_desc.set_input(input_name, kwargs[input_name])
        for output_name in backward_op.desc.output_names():
            dist_op_desc.set_output(output_name, kwargs[output_name])

        main_block._sync_with_cpp()

343
        # check if need gradient allreduce
344
        # if there is a non-gradient & non-parameter input and its batch dimension is splited,
345 346 347 348
        # we need insert gradient allreduce for the gradient of parameter in its output
        need_gradient_allreduce = False
        for input_name in backward_op.desc.input_names():
            for varname in backward_op.desc.input(input_name):
J
JZ-LIANG 已提交
349 350
                if "@GRAD" not in varname and not is_parameter_related(
                        varname, main_block):
351 352

                    # NOTE input var's dim_mapping of backward op should be the same with input var instead of corresponding varname of forward op
353
                    process_mesh = dist_attr.process_mesh
354 355 356
                    var_dim_mapping = dist_attr.get_input_dims_mapping(varname)

                    # FIXME (JZ-LIANG) Remove this hack to support any op mesh group for Pipeline Parallelism
357 358 359
                    if rank_id not in process_mesh.processes:
                        rank_id = _get_corresponding_rank(ctx, process_mesh,
                                                          rank_id)
360 361 362 363 364

                    mesh_shape = process_mesh.topology
                    batch_size_axis = var_dim_mapping[0]
                    if batch_size_axis > -1 and mesh_shape[batch_size_axis] > 1:
                        need_gradient_allreduce = True
365 366 367
                        group_ranks = _get_comm_group(process_mesh.processes,
                                                      process_mesh.topology,
                                                      batch_size_axis, rank_id)
368 369 370 371 372 373 374 375
                        dp_degree = len(group_ranks)
                        dp_group = new_process_group(group_ranks)
                        break

        if need_gradient_allreduce:
            allreduce_vars = []
            for input_name in backward_op.desc.input_names():
                for varname in backward_op.desc.input(input_name):
J
JZ-LIANG 已提交
376 377
                    if "@GRAD" not in varname and is_parameter_related(
                            varname, main_block):
378 379 380 381 382 383
                        # NOTE: When amp and recompute pass are effective at the same time,
                        # if a parameter is casted and recomputed, the 'parameter@GARD' can not
                        # be found in the grad_op's output.
                        if "subprog_" in varname:
                            varname = varname[:varname.index(".subprog_")]

384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
                        assert len(
                            backward_op.desc.input(input_name)
                        ) == 1, "parameter input to grad op should be length 1, but got [{}]".format(
                            backward_op.desc.input(input_name))

                        assert varname + "@GRAD" in backward_op.desc.output_arg_names(
                        ), "parameter's grad [{}] not found in the grad op's output".format(
                            varname + "@GRAD")
                        assert len(
                            backward_op.desc.output(input_name + "@GRAD")
                        ) == 1, "parameter grad of grad op should be length 1, but got [{}]".format(
                            backward_op.desc.output(input_name + "@GRAD"))
                        allreduce_vars.append(
                            backward_op.desc.output(input_name + "@GRAD")[0])

            if len(allreduce_vars) > 0:

                for varname in allreduce_vars:

                    grad_var = main_block.var(varname)
                    allreduce_op = main_block.append_op(
                        type='c_allreduce_sum',
                        inputs={'X': [grad_var]},
                        outputs={'Out': [grad_var]},
                        attrs={
                            'ring_id': dp_group.id,
                            'use_calc_stream': True,
                            OP_ROLE_KEY: OpRole.Backward
                        })

                    scale_op = main_block.append_op(
                        type='scale',
                        inputs={'X': grad_var},
                        outputs={'Out': grad_var},
                        attrs={
                            'scale': 1.0 / dp_degree,
                            OP_ROLE_KEY: OpRole.Backward
                        })

423 424 425
                    dims_mapping = ctx.get_tensor_dist_attr_for_program(
                        grad_var).dims_mapping
                    process_mesh = dist_attr.process_mesh
426
                    for op in [allreduce_op, scale_op]:
427 428
                        op_attr = OperatorDistributedAttribute()
                        op_attr.process_mesh = process_mesh
429 430 431 432
                        op_attr.set_output_dims_mapping(grad_var.name,
                                                        dims_mapping)
                        op_attr.set_input_dims_mapping(grad_var.name,
                                                       dims_mapping)
433
                        ctx.set_op_dist_attr_for_program(op, op_attr)
434 435 436 437 438 439

                main_block._sync_with_cpp()


register_distributed_operator_impl(
    "default", DistributedDefaultImpl0("replicate_parallel"))