batch_norm_op.h 8.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
Q
qingqing01 已提交
16 17 18
#include <memory>
#include <string>
#include <unordered_map>
19
#include <vector>
Y
Yi Wang 已提交
20 21
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
22
#include "paddle/fluid/operators/math/math_function.h"
L
lvmengsi 已提交
23
#include "paddle/fluid/operators/norm_utils.h"
Q
Qiao Longfei 已提交
24 25 26 27

namespace paddle {
namespace operators {

28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
using DataLayout = framework::DataLayout;

template <typename T>
using EigenArrayMap =
    Eigen::Map<Eigen::Array<T, Eigen::Dynamic, Eigen::Dynamic>>;
template <typename T>
using ConstEigenArrayMap =
    Eigen::Map<const Eigen::Array<T, Eigen::Dynamic, Eigen::Dynamic>>;
template <typename T>
using EigenVectorArrayMap = Eigen::Map<Eigen::Array<T, Eigen::Dynamic, 1>>;
template <typename T>
using ConstEigenVectorArrayMap =
    Eigen::Map<const Eigen::Array<T, Eigen::Dynamic, 1>>;

44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
template <typename DeviceContext, typename T>
inline void ResizeToChannelFirst(const framework::ExecutionContext& context,
                                 const Tensor* input,
                                 Tensor* transformed_input) {
  int dim = input->dims().size() - 2;
  if (dim == 3) {
    // input
    transformed_input->Resize(input->dims());

    auto in_dims_vec = framework::vectorize(input->dims());
    in_dims_vec[1] = input->dims()[4];
    in_dims_vec[2] = input->dims()[1];
    in_dims_vec[3] = input->dims()[2];
    in_dims_vec[4] = input->dims()[3];
    transformed_input->Resize(framework::make_ddim(in_dims_vec));
    transformed_input->mutable_data<T>(context.GetPlace());

  } else if (dim == 2) {
    // input
    transformed_input->Resize(input->dims());

    auto in_dims_vec = framework::vectorize(input->dims());
    in_dims_vec[1] = input->dims()[3];
    in_dims_vec[2] = input->dims()[1];
    in_dims_vec[3] = input->dims()[2];
    transformed_input->Resize(framework::make_ddim(in_dims_vec));
    transformed_input->mutable_data<T>(context.GetPlace());
  } else if (dim == 1) {
    transformed_input->Resize(input->dims());

    auto in_dims_vec = framework::vectorize(input->dims());
    in_dims_vec[1] = input->dims()[2];
    in_dims_vec[2] = input->dims()[1];
    transformed_input->Resize(framework::make_ddim(in_dims_vec));
    transformed_input->mutable_data<T>(context.GetPlace());
  }
}

template <typename DeviceContext, typename T>
inline void TransToChannelFirst(const framework::ExecutionContext& context,
                                const Tensor* input,
                                Tensor* transformed_input) {
  int dim = input->dims().size() - 2;
  if (dim == 3) {
    auto& dev_ctx = context.template device_context<DeviceContext>();
    std::vector<int> axis{0, 4, 1, 2, 3};
    math::Transpose<DeviceContext, T, 5> trans5;
    trans5(dev_ctx, *input, transformed_input, axis);

  } else if (dim == 2) {
    auto& dev_ctx = context.template device_context<DeviceContext>();
    std::vector<int> axis{0, 3, 1, 2};
    math::Transpose<DeviceContext, T, 4> trans4;
    trans4(dev_ctx, *input, transformed_input, axis);
  } else if (dim == 1) {
    auto& dev_ctx = context.template device_context<DeviceContext>();
    std::vector<int> axis{0, 2, 1};
    math::Transpose<DeviceContext, T, 3> trans3;
    trans3(dev_ctx, *input, transformed_input, axis);
  }
}

106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
template <typename DeviceContext, typename T>
inline void ResizeToChannelLast(const framework::ExecutionContext& context,
                                const Tensor* input,
                                Tensor* transformed_input) {
  int dim = input->dims().size() - 2;
  if (dim == 3) {
    transformed_input->Resize(input->dims());

    auto in_dims_vec = framework::vectorize(input->dims());
    in_dims_vec[1] = input->dims()[2];
    in_dims_vec[2] = input->dims()[3];
    in_dims_vec[3] = input->dims()[4];
    in_dims_vec[4] = input->dims()[1];
    transformed_input->Resize(framework::make_ddim(in_dims_vec));
    transformed_input->mutable_data<T>(context.GetPlace());

  } else if (dim == 2) {
    transformed_input->Resize(input->dims());

    auto in_dims_vec = framework::vectorize(input->dims());
    in_dims_vec[1] = input->dims()[2];
    in_dims_vec[2] = input->dims()[3];
    in_dims_vec[3] = input->dims()[1];
    transformed_input->Resize(framework::make_ddim(in_dims_vec));
    transformed_input->mutable_data<T>(context.GetPlace());
  } else if (dim == 1) {
    transformed_input->Resize(input->dims());

    auto in_dims_vec = framework::vectorize(input->dims());
    in_dims_vec[1] = input->dims()[2];
    in_dims_vec[2] = input->dims()[1];
    transformed_input->Resize(framework::make_ddim(in_dims_vec));
    transformed_input->mutable_data<T>(context.GetPlace());
  }
}

142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
template <typename DeviceContext, typename T>
inline void TransToChannelLast(const framework::ExecutionContext& context,
                               const Tensor* input, Tensor* transformed_input) {
  int dim = input->dims().size() - 2;
  if (dim == 3) {
    auto& dev_ctx = context.template device_context<DeviceContext>();
    std::vector<int> axis{0, 2, 3, 4, 1};
    math::Transpose<DeviceContext, T, 5> trans5;
    trans5(dev_ctx, *input, transformed_input, axis);

  } else if (dim == 2) {
    auto& dev_ctx = context.template device_context<DeviceContext>();
    std::vector<int> axis{0, 2, 3, 1};
    math::Transpose<DeviceContext, T, 4> trans4;
    trans4(dev_ctx, *input, transformed_input, axis);
  } else if (dim == 1) {
    auto& dev_ctx = context.template device_context<DeviceContext>();
    std::vector<int> axis{0, 2, 1};
    math::Transpose<DeviceContext, T, 3> trans3;
    trans3(dev_ctx, *input, transformed_input, axis);
  }
}

Q
qingqing01 已提交
165 166 167
class BatchNormOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
168
  void InferShape(framework::InferShapeContext* ctx) const override;
Q
qingqing01 已提交
169 170 171

 protected:
  framework::OpKernelType GetExpectedKernelType(
172
      const framework::ExecutionContext& ctx) const override;
173 174 175 176

  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const framework::OpKernelType& expected_kernel_type) const override;
Q
qingqing01 已提交
177 178 179 180 181
};

class BatchNormGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
182
  void InferShape(framework::InferShapeContext* ctx) const override;
Q
qingqing01 已提交
183 184 185

 protected:
  framework::OpKernelType GetExpectedKernelType(
186
      const framework::ExecutionContext& ctx) const override;
187 188 189 190

  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const framework::OpKernelType& expected_kernel_type) const override;
Q
qingqing01 已提交
191 192
};

193 194 195 196 197 198 199 200 201 202
class BatchNormDoubleGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override;

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override;
};

Q
qingqing01 已提交
203 204 205 206 207
class BatchNormOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override;
};

208 209 210 211 212 213
template <typename T>
class BatchNormGradMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
214
  void Apply(GradOpPtr<T> op) const override;
215 216
};

217 218 219 220 221 222 223 224 225
template <typename T>
class BatchNormDoubleGradMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override;
};

Q
qingqing01 已提交
226 227 228
class BatchNormOpInferVarType
    : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
229
  std::unordered_map<std::string, std::string>& GetInputOutputWithSameType()
Q
qingqing01 已提交
230
      const override {
231 232
    static std::unordered_map<std::string, std::string> m{{"X", /*->*/ "Y"}};
    return m;
Q
qingqing01 已提交
233 234 235
  }
};

Q
QI JUN 已提交
236
template <typename DeviceContext, typename T>
Q
Qiao Longfei 已提交
237 238
class BatchNormKernel : public framework::OpKernel<T> {
 public:
239
  void Compute(const framework::ExecutionContext& ctx) const override;
Q
Qiao Longfei 已提交
240 241
};

Q
QI JUN 已提交
242
template <typename DeviceContext, typename T>
Q
Qiao Longfei 已提交
243 244
class BatchNormGradKernel : public framework::OpKernel<T> {
 public:
245
  void Compute(const framework::ExecutionContext& ctx) const override;
Q
Qiao Longfei 已提交
246 247
};

248 249 250 251 252 253
template <typename DeviceContext, typename T>
class BatchNormDoubleGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override;
};

Q
Qiao Longfei 已提交
254 255
}  // namespace operators
}  // namespace paddle