split_lod_tensor_op.cc 7.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15 16 17
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/platform/device_context.h"
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

namespace paddle {
namespace operators {

struct CopyRange {
  size_t begin;
  size_t end;
};

using LoD = framework::LoD;

class SplitLoDTensorOp : public framework::OperatorBase {
 public:
  SplitLoDTensorOp(const std::string &type,
                   const framework::VariableNameMap &inputs,
                   const framework::VariableNameMap &outputs,
                   const framework::AttributeMap &attrs)
      : OperatorBase(type, inputs, outputs, attrs) {}
36 37 38 39

 private:
  void RunImpl(const framework::Scope &scope,
               const platform::Place &dev_place) const override {
40 41 42 43 44 45 46 47 48 49
    auto &x = scope.FindVar(Input("X"))->Get<framework::LoDTensor>();
    auto &mask = scope.FindVar(Input("Mask"))->Get<framework::LoDTensor>();
    auto *out_true =
        scope.FindVar(Output("OutTrue"))->GetMutable<framework::LoDTensor>();
    auto *out_false =
        scope.FindVar(Output("OutFalse"))->GetMutable<framework::LoDTensor>();
    auto level = static_cast<size_t>(Attr<int>("level"));
    auto &x_lod = x.lod();
    auto &mask_dim = mask.dims();

Y
Yu Yang 已提交
50 51
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
    auto &dev_ctx = *pool.Get(dev_place);
D
dzhwinter 已提交
52

53 54 55 56 57
    std::unique_ptr<framework::LoDTensor> cpu_mask{new framework::LoDTensor()};
    if (platform::is_cpu_place(mask.place())) {
      cpu_mask->ShareDataWith(mask);
    } else if (platform::is_gpu_place(mask.place())) {
#ifdef PADDLE_WITH_CUDA
Y
Yi Wang 已提交
58 59
      framework::TensorCopy(mask, platform::CPUPlace(), dev_ctx,
                            cpu_mask.get());
60
#else
61 62
      PADDLE_THROW(paddle::platform::errors::Fatal(
          "Not support GPU, Please compile WITH_GPU option"));
63 64 65 66
#endif
    }
    auto *mask_data = cpu_mask->data<bool>();

J
jerrywgz 已提交
67
    std::vector<std::vector<CopyRange>> copy_ranges(2);
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115

    // set out_true/out_false lod
    for (size_t t = 0; t < 2; t++) {
      LoD *lod = nullptr;
      if (t == 0) {
        lod = out_false->mutable_lod();
      } else {
        lod = out_true->mutable_lod();
      }
      lod->clear();
      for (size_t i = 0; i < static_cast<size_t>(mask_dim[0]); i++) {
        if (static_cast<size_t>(mask_data[i]) == t) {
          size_t start_idx = i;
          auto lod_and_offset = framework::GetSubLoDAndAbsoluteOffset(
              x_lod, start_idx, start_idx + 1, level);

          auto &lod_length = lod_and_offset.first;
          framework::AppendLoD(lod, lod_length);

          size_t start_offset = lod_and_offset.second.first;
          size_t end_offset = lod_and_offset.second.second;
          copy_ranges[t].emplace_back(CopyRange{start_offset, end_offset});
        }
      }
    }

    for (size_t t = 0; t < 2; ++t) {
      framework::LoDTensor *out;
      if (t == 0) {
        out = out_false;
      } else {
        out = out_true;
      }
      auto &ranges = copy_ranges[t];
      size_t height = std::accumulate(
          ranges.begin(), ranges.end(), 0UL,
          [](size_t a, const CopyRange &b) { return a + b.end - b.begin; });
      auto x_dim = x.dims();
      x_dim[0] = static_cast<int64_t>(height);
      out->Resize(x_dim);
      out->mutable_data(x.place(), x.type());
      size_t offset = 0;
      for (auto &each_range : ranges) {
        size_t len = each_range.end - each_range.begin;
        if (len == 0) {
          continue;
        }
        // out[offset: offset+len] = x[each_range.begin: each_range.end]
D
dzhwinter 已提交
116 117
        auto slice = out->Slice(static_cast<int>(offset),
                                static_cast<int>(offset + len));
Y
Yi Wang 已提交
118 119 120
        framework::TensorCopy(x.Slice(static_cast<int>(each_range.begin),
                                      static_cast<int>(each_range.end)),
                              x.place(), dev_ctx, &slice);
121 122 123 124 125 126 127 128
        offset += len;
      }
    }
  }
};

class SplitLoDTensorOpProtoMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
129
  void Make() override {
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
    AddInput("X", "The input LoDTensor");
    AddInput("Mask", "A bool column vector which mask the input");
    AddOutput("OutTrue", "True branch of input LoDTensor");
    AddOutput("OutFalse", "False branch of input LoDTensor");
    AddAttr<int>("level", "(int) the specific lod level to split.")
        .SetDefault(0)
        .EqualGreaterThan(0);
    AddComment(
        R"DOC(
        Split a LoDTensor with a Mask at certain level. The input LoDTensor
        has 3 sequence at certain lod level. The Mask is a bool column vector,
        such as [0, 1, 0] at the same level. The first and third sequence will
        be send to False Output LoDTensor; whereas the second sequence will
        be send to True Output LoDTensor. Please refer to MergeLoDTensorOp.)DOC");
  }
};

class SplitLoDTensorInferShape : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext *context) const override {
150 151 152 153 154 155 156
    OP_INOUT_CHECK(context->HasInput("X"), "Input", "X", "SplitLoDTensor");
    OP_INOUT_CHECK(context->HasInput("Mask"), "Input", "Mask",
                   "SplitLoDTensor");
    OP_INOUT_CHECK(context->HasOutput("OutTrue"), "Output", "OutTrue",
                   "SplitLoDTensor");
    OP_INOUT_CHECK(context->HasOutput("OutFalse"), "Output", "OutFalse",
                   "SplitLoDTensor");
157 158

    auto mask_dim = context->GetInputDim("Mask");
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
    PADDLE_ENFORCE_EQ(
        mask_dim.size(), 2,
        platform::errors::InvalidArgument(
            "If you are using IfElse OP:"
            "\n\nie = fluid.layers.IfElse(cond=cond)\nwith "
            "ie.true_block():\n    out_1 = ie.input(x)\n\n"
            "Please ensure that the cond should be a 2-D tensor and "
            "the second dim size of cond should be 1. "
            "But now the cond's shape is [",
            *mask_dim.Get(), "].\n"));
    PADDLE_ENFORCE_EQ(mask_dim[1], 1,
                      platform::errors::InvalidArgument(
                          "If you are using IfElse OP:"
                          "\n\nie = fluid.layers.IfElse(cond=cond)\nwith "
                          "ie.true_block():\n    out_1 = ie.input(x)\n\n"
                          "Please ensure that the cond should be a 2-D tensor "
                          "and the second dim size of cond should be 1. "
                          "But now the cond's shape is [",
                          *mask_dim.Get(), "].\n"));
178 179 180 181 182 183

    context->SetOutputDim("OutTrue", context->GetInputDim("X"));
    context->SetOutputDim("OutFalse", context->GetInputDim("X"));
  }
};

H
hong 已提交
184 185
template <typename T>
class SplitLoDTensorArrayGradMaker : public framework::SingleGradOpMaker<T> {
186
 public:
H
hong 已提交
187
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
188 189

 protected:
190
  void Apply(GradOpPtr<T> grad_op) const override {
191
    grad_op->SetType("merge_lod_tensor");
H
hong 已提交
192 193 194 195 196 197
    grad_op->SetInput("InTrue", this->OutputGrad("OutTrue"));
    grad_op->SetInput("InFalse", this->OutputGrad("OutFalse"));
    grad_op->SetInput("Mask", this->Input("Mask"));
    grad_op->SetInput("X", this->Input("X"));
    grad_op->SetOutput("Out", this->InputGrad("X"));
    grad_op->SetAttrMap(this->Attrs());
198 199 200 201 202 203 204
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
H
hong 已提交
205 206 207 208 209
REGISTER_OPERATOR(
    split_lod_tensor, ops::SplitLoDTensorOp, ops::SplitLoDTensorOpProtoMaker,
    ops::SplitLoDTensorInferShape,
    ops::SplitLoDTensorArrayGradMaker<paddle::framework::OpDesc>,
    ops::SplitLoDTensorArrayGradMaker<paddle::imperative::OpBase>);