argsort_op.cu 15.0 KB
Newer Older
Y
Yibing Liu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include <thrust/copy.h>
Y
Yibing Liu 已提交
16
#include <thrust/execution_policy.h>
17
#include <thrust/sequence.h>
Y
Yibing Liu 已提交
18
#include <thrust/sort.h>
19
#include "cub/cub.cuh"
Y
Yibing Liu 已提交
20 21
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/argsort_op.h"
22
#include "paddle/fluid/operators/transpose_op.h"
Y
Yibing Liu 已提交
23 24 25
#include "paddle/fluid/platform/cuda_device_function.h"
#include "paddle/fluid/platform/cuda_primitives.h"

26 27 28 29 30 31 32 33
// set cub base traits in order to handle float16
namespace cub {
template <>
struct NumericTraits<paddle::platform::float16>
    : BaseTraits<FLOATING_POINT, true, false, uint16_t,
                 paddle::platform::float16> {};
}  // namespace cub

Y
Yibing Liu 已提交
34 35 36 37
namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
Y
Yibing Liu 已提交
38

39 40 41 42
// Iter for move to next row
struct SegmentOffsetIter {
  EIGEN_DEVICE_FUNC
  explicit SegmentOffsetIter(int num_cols) : num_cols_(num_cols) {}
Y
Yibing Liu 已提交
43

44 45
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE int operator()(int idx) const {
    return idx * num_cols_;
Y
Yibing Liu 已提交
46
  }
47 48 49

  int num_cols_;
};
Y
Yibing Liu 已提交
50 51

template <typename T>
52 53 54 55 56 57 58 59
static __global__ void FillIndex(T* indices, T num_rows, T num_cols) {
  int col_id = threadIdx.x;
  int row_id = blockIdx.x;

  for (T j = row_id; j < num_rows; j += gridDim.x) {
    for (T i = col_id; i < num_cols; i += blockDim.x) {
      indices[j * num_cols + i] = i;
    }
Y
Yibing Liu 已提交
60 61 62
  }
}

63 64 65 66 67 68 69 70 71 72
template <typename T, typename IndType>
static __global__ void FillFlattenGrad(const T* dO, const IndType* indices,
                                       int64_t size, T* dX) {
  int index = threadIdx.x + blockIdx.x * blockDim.x;
  int stride = blockDim.x * gridDim.x;
  for (int i = index; i < size; i += stride) {
    dX[indices[i]] = dO[i];
  }
}

73 74 75 76 77 78 79 80 81 82 83 84 85
template <typename T, typename IndType>
static __global__ void FillGrad(const T* dO, const IndType* indices, T* dX,
                                IndType num_rows, IndType num_cols) {
  int col_id = threadIdx.x;
  int row_id = blockIdx.x;

  for (IndType j = row_id; j < num_rows; j += gridDim.x) {
    for (IndType i = col_id; i < num_cols; i += blockDim.x) {
      dX[j * num_cols + indices[j * num_cols + i]] = dO[j * num_cols + i];
    }
  }
}

86 87
// Sort by flag descending, True: descending. False: Ascending.
// Default is false.
88
template <typename T, typename IndType>
89 90 91
void ArgFullSort(const platform::CUDADeviceContext& ctx, const Tensor* input,
                 Tensor* output, Tensor* indices, const IndType num_rows,
                 const IndType num_cols, const bool descending) {
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
  auto cu_stream = ctx.stream();

  Tensor input_indices;

  const std::vector<IndType> dims = {num_rows, num_cols};
  auto dim = framework::make_ddim(dims);
  input_indices.Resize(dim);
  input_indices.mutable_data<IndType>(ctx.GetPlace());

  size_t temp_storage_bytes = -1;

  auto ComputeBlockSize = [](IndType col) {
    if (col > 512)
      return 1024;
    else if (col > 256 && col <= 512)
      return 512;
    else if (col > 128 && col <= 256)
      return 256;
    else if (col > 64 && col <= 128)
      return 128;
    else
      return 64;
  };

  int block_size = ComputeBlockSize(num_cols);

  int maxGridDimX = ctx.GetCUDAMaxGridDimSize().x;
  // actually, int num_rows < max_grid_size
  int grid_size = num_rows < maxGridDimX ? num_rows : maxGridDimX;
  // Init a index array
  FillIndex<<<grid_size, block_size, 0, cu_stream>>>(
      input_indices.data<IndType>(), num_rows, num_cols);

  T* sorted_out_ptr;
  IndType* sorted_indices_ptr;

  const T* inp = input->data<T>();
  T* out = output->mutable_data<T>(ctx.GetPlace());
  IndType* ind = indices->mutable_data<IndType>(ctx.GetPlace());

  sorted_out_ptr = out;
  sorted_indices_ptr = ind;

  // create iter for counting input
  cub::CountingInputIterator<IndType> counting_iter(0);
  // segment_offset is used for move to next row
  cub::TransformInputIterator<IndType, SegmentOffsetIter,
                              cub::CountingInputIterator<IndType>>
      segment_offsets_t(counting_iter, SegmentOffsetIter(num_cols));

142 143 144 145 146 147 148 149 150 151 152 153 154 155
  cudaError_t err;
  if (descending) {
    err = cub::DeviceSegmentedRadixSort::SortPairsDescending(
        nullptr, temp_storage_bytes, inp, sorted_out_ptr,
        input_indices.data<IndType>(), sorted_indices_ptr, num_cols * num_rows,
        num_rows, segment_offsets_t, segment_offsets_t + 1, 0, sizeof(T) * 8,
        cu_stream);
  } else {
    err = cub::DeviceSegmentedRadixSort::SortPairs(
        nullptr, temp_storage_bytes, inp, sorted_out_ptr,
        input_indices.data<IndType>(), sorted_indices_ptr, num_cols * num_rows,
        num_rows, segment_offsets_t, segment_offsets_t + 1, 0, sizeof(T) * 8,
        cu_stream);
  }
156
  PADDLE_ENFORCE_CUDA_SUCCESS(err);
157 158 159 160

  Tensor temp_storage;
  temp_storage.mutable_data<uint8_t>(ctx.GetPlace(), temp_storage_bytes);

161 162 163 164 165 166 167 168 169 170 171 172 173
  if (descending) {
    err = cub::DeviceSegmentedRadixSort::SortPairsDescending(
        temp_storage.data<uint8_t>(), temp_storage_bytes, inp, sorted_out_ptr,
        input_indices.data<IndType>(), sorted_indices_ptr, num_cols * num_rows,
        num_rows, segment_offsets_t, segment_offsets_t + 1, 0, sizeof(T) * 8,
        cu_stream);
  } else {
    err = cub::DeviceSegmentedRadixSort::SortPairs(
        temp_storage.data<uint8_t>(), temp_storage_bytes, inp, sorted_out_ptr,
        input_indices.data<IndType>(), sorted_indices_ptr, num_cols * num_rows,
        num_rows, segment_offsets_t, segment_offsets_t + 1, 0, sizeof(T) * 8,
        cu_stream);
  }
174

175
  PADDLE_ENFORCE_CUDA_SUCCESS(err);
Y
Yibing Liu 已提交
176 177
}

178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
template <typename T, typename IndType>
void ArgFullAssign(const platform::CUDADeviceContext& ctx, const Tensor* dO,
                   const Tensor* indices, Tensor* dX, const IndType num_rows,
                   const IndType num_cols) {
  auto cu_stream = ctx.stream();

  auto ComputeBlockSize = [](IndType col) {
    if (col > 512)
      return 1024;
    else if (col > 256 && col <= 512)
      return 512;
    else if (col > 128 && col <= 256)
      return 256;
    else if (col > 64 && col <= 128)
      return 128;
    else
      return 64;
  };

  int block_size = ComputeBlockSize(num_cols);

  int maxGridDimX = ctx.GetCUDAMaxGridDimSize().x;
  // actually, int num_rows < max_grid_size
  int grid_size = num_rows < maxGridDimX ? num_rows : maxGridDimX;
  FillGrad<<<grid_size, block_size, 0, cu_stream>>>(
      dO->data<T>(), indices->data<IndType>(), dX->data<T>(), num_rows,
      num_cols);
}

Y
Yibing Liu 已提交
207
template <typename T>
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
void ArgFlattenAssign(const platform::CUDADeviceContext& ctx, const Tensor* dO,
                      const Tensor* indices, int64_t size, Tensor* dX) {
  auto cu_stream = ctx.stream();

  const int64_t block_size =
      std::min(size, static_cast<int64_t>(ctx.GetMaxThreadsPerBlock()));
  int64_t max_threads = ctx.GetMaxPhysicalThreadCount();
  const int64_t max_blocks =
      std::max(((max_threads - 1) / block_size + 1), static_cast<int64_t>(1));
  const int64_t grid_size =
      std::min(max_blocks, (size + block_size - 1) / block_size);

  FillFlattenGrad<<<grid_size, block_size, 0, cu_stream>>>(
      dO->data<T>(), indices->data<int64_t>(), size, dX->data<T>());
}

template <typename DeviceContext, typename T>
Y
Yibing Liu 已提交
225 226 227 228 229 230 231
class ArgsortOpCUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input = ctx.Input<Tensor>("X");
    auto* output = ctx.Output<Tensor>("Out");
    auto* indices = ctx.Output<Tensor>("Indices");
    int axis = ctx.Attr<int>("axis");
232
    bool descending = ctx.Attr<bool>("descending");
Y
Yibing Liu 已提交
233 234

    auto in_dims = input->dims();
235
    axis = (axis < 0) ? (in_dims.size() + axis) : axis;
Y
Yibing Liu 已提交
236

237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
    const T* in_data = input->data<T>();
    auto size = input->numel();
    T* out_data = output->mutable_data<T>(ctx.GetPlace());
    int64_t* ids_data = indices->mutable_data<int64_t>(ctx.GetPlace());

    // Use thrust for parallel acceleration when the input size is equal to the
    // length of the ‘axis’ dimension.
    // Compared to the following 'Special case for full sort', ascending sort is
    // 34 times faster and descending sort is 31 times faster.
    if (size == in_dims[axis]) {
      thrust::sequence(thrust::device, ids_data, ids_data + size);
      thrust::copy(thrust::device, in_data, in_data + size, out_data);
      thrust::sort_by_key(thrust::device, out_data, out_data + size, ids_data);
      if (descending) {
        thrust::reverse(thrust::device, out_data, out_data + size);
        thrust::reverse(thrust::device, ids_data, ids_data + size);
      }
      return;
    }
Y
Yibing Liu 已提交
256

257 258 259 260 261 262
    // Special case for full sort, speedup ~190x.
    if (axis == -1 || axis + 1 == in_dims.size()) {
      const int64_t input_height = framework::product(
          framework::slice_ddim(in_dims, 0, in_dims.size() - 1));
      const int64_t input_width = in_dims[in_dims.size() - 1];
      const auto& dev_ctx = ctx.cuda_device_context();
263 264
      ArgFullSort<T, int64_t>(dev_ctx, input, output, indices, input_height,
                              input_width, descending);
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
    } else {
      // if not full sort, do transpose first
      std::vector<int> trans;
      for (int i = 0; i < axis; i++) {
        trans.push_back(i);
      }
      trans.push_back(in_dims.size() - 1);
      for (int i = axis + 1; i < in_dims.size() - 1; i++) {
        trans.push_back(i);
      }
      trans.push_back(axis);
      framework::DDim trans_dims(in_dims);
      for (int i = 0; i < trans.size(); i++) {
        trans_dims[i] = in_dims[trans[i]];
      }

      Tensor trans_inp;
      T* trans_inp_data = trans_inp.mutable_data<T>(trans_dims, ctx.GetPlace());
      int ndims = trans.size();
      const auto& dev_ctx = ctx.cuda_device_context();
      // Do transpose
      TransCompute<platform::CUDADeviceContext, T>(ndims, dev_ctx, *input,
                                                   &trans_inp, trans);

      const int64_t input_height = framework::product(
          framework::slice_ddim(trans_dims, 0, trans_dims.size() - 1));
      const int64_t input_width = trans_dims[trans_dims.size() - 1];

      Tensor tmp_out;
      tmp_out.mutable_data<T>(trans_dims, ctx.GetPlace());
      T* out_data = output->mutable_data<T>(ctx.GetPlace());

      Tensor tmp_indices;
298 299 300 301 302 303 304 305 306
      // temp indices for sorting
      tmp_indices.mutable_data<int64_t>(trans_dims, ctx.GetPlace());
      indices->mutable_data<int64_t>(ctx.GetPlace());

      ArgFullSort<T, int64_t>(dev_ctx, &trans_inp, &tmp_out, &tmp_indices,
                              input_height, input_width, descending);

      TransCompute<platform::CUDADeviceContext, int64_t>(
          ndims, dev_ctx, tmp_indices, indices, trans);
307 308 309 310 311
      // transpose back
      TransCompute<platform::CUDADeviceContext, T>(ndims, dev_ctx, tmp_out,
                                                   output, trans);
      return;
    }
Y
Yibing Liu 已提交
312 313 314
  }
};

315 316 317 318 319 320 321 322 323 324 325 326
template <typename T>
class ArgsortGradOpCUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* indices = ctx.Input<Tensor>("Indices");
    auto* dX = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* dO = ctx.Input<Tensor>(framework::GradVarName("Out"));
    int axis = ctx.Attr<int>("axis");

    dX->mutable_data<T>(ctx.GetPlace());
    if (dO->numel() == 0) return;

327
    auto in_dims = dX->dims();
328 329
    axis = (axis < 0) ? (in_dims.size() + axis) : axis;

330 331 332 333 334 335 336 337 338 339 340
    int64_t size = dX->numel();
    const auto& dev_ctx = ctx.cuda_device_context();

    // Parallel acceleration when the input size is equal to the length of the
    // ‘axis’ dimension.
    // Compared to 'special case for full sort' below, the gradient calculation
    // is 10 times faster.
    if (size == in_dims[axis]) {
      ArgFlattenAssign<T>(dev_ctx, dO, indices, size, dX);
      return;
    }
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393

    // Special case for full sort, speedup ~190x.
    if (axis == -1 || axis + 1 == in_dims.size()) {
      const int64_t input_height = framework::product(
          framework::slice_ddim(in_dims, 0, in_dims.size() - 1));
      const int64_t input_width = in_dims[in_dims.size() - 1];
      ArgFullAssign<T, int64_t>(dev_ctx, dO, indices, dX, input_height,
                                input_width);
    } else {
      // if not full sort, do transpose first
      std::vector<int> trans;
      for (int i = 0; i < axis; i++) {
        trans.push_back(i);
      }
      trans.push_back(in_dims.size() - 1);
      for (int i = axis + 1; i < in_dims.size() - 1; i++) {
        trans.push_back(i);
      }
      trans.push_back(axis);
      framework::DDim trans_dims(in_dims);
      for (int i = 0; i < trans.size(); i++) {
        trans_dims[i] = in_dims[trans[i]];
      }

      Tensor trans_dO;
      trans_dO.mutable_data<T>(trans_dims, ctx.GetPlace());
      Tensor trans_ind;
      trans_ind.mutable_data<int64_t>(trans_dims, ctx.GetPlace());
      int ndims = trans.size();
      // Do transpose
      TransCompute<platform::CUDADeviceContext, T>(ndims, dev_ctx, *dO,
                                                   &trans_dO, trans);
      TransCompute<platform::CUDADeviceContext, int64_t>(
          ndims, dev_ctx, *indices, &trans_ind, trans);

      const int64_t input_height = framework::product(
          framework::slice_ddim(trans_dims, 0, trans_dims.size() - 1));
      const int64_t input_width = trans_dims[trans_dims.size() - 1];

      Tensor tmp_out;
      tmp_out.mutable_data<T>(trans_dims, ctx.GetPlace());

      ArgFullAssign<T, int64_t>(dev_ctx, &trans_dO, &trans_ind, &tmp_out,
                                input_height, input_width);

      // transpose back
      TransCompute<platform::CUDADeviceContext, T>(ndims, dev_ctx, tmp_out, dX,
                                                   trans);
      return;
    }
  }
};

Y
Yibing Liu 已提交
394 395 396
}  // namespace operators
}  // namespace paddle

397
REGISTER_OP_CUDA_KERNEL(
398 399 400 401 402 403 404 405 406 407 408
    argsort,
    paddle::operators::ArgsortOpCUDAKernel<paddle::platform::CUDADeviceContext,
                                           float>,
    paddle::operators::ArgsortOpCUDAKernel<paddle::platform::CUDADeviceContext,
                                           double>,
    paddle::operators::ArgsortOpCUDAKernel<paddle::platform::CUDADeviceContext,
                                           int>,
    paddle::operators::ArgsortOpCUDAKernel<paddle::platform::CUDADeviceContext,
                                           int64_t>,
    paddle::operators::ArgsortOpCUDAKernel<paddle::platform::CUDADeviceContext,
                                           paddle::platform::float16>);
409 410 411 412 413 414
REGISTER_OP_CUDA_KERNEL(
    argsort_grad, paddle::operators::ArgsortGradOpCUDAKernel<float>,
    paddle::operators::ArgsortGradOpCUDAKernel<double>,
    paddle::operators::ArgsortGradOpCUDAKernel<int>,
    paddle::operators::ArgsortGradOpCUDAKernel<int64_t>,
    paddle::operators::ArgsortGradOpCUDAKernel<paddle::platform::float16>);