dropout_kernel.cc 6.7 KB
Newer Older
H
hong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/dropout_kernel.h"
16

H
hong 已提交
17 18 19
#include "paddle/fluid/framework/generator.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
20
#include "paddle/phi/kernels/expand_kernel.h"
H
hong 已提交
21 22 23 24
#include "paddle/phi/kernels/funcs/eigen/common.h"

namespace phi {

25 26 27
template <typename T, typename Context>
void ComputeDropoutInference(const Context& ctx,
                             const DenseTensor& x,
28
                             const Scalar& dropout_prob,
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
                             bool upscale_in_train,
                             DenseTensor* y) {
  if (upscale_in_train) {
    const auto* X_data = x.data<T>();
    T* Y_data = ctx.template Alloc<T>(y);
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for
#endif
    for (int i = 0; i < x.numel(); i++) {
      Y_data[i] = X_data[i];
    }
  } else {
    auto X = EigenMatrix<T>::Reshape(x, 1);
    auto Y = EigenMatrix<T>::Reshape(*y, 1);
    auto& place = *ctx.eigen_device();
44
    Y.device(place) = X * static_cast<T>(1.0f - dropout_prob.to<float>());
45 46 47
  }
}

H
hong 已提交
48 49 50
template <typename T, typename Context>
void DropoutRawKernel(const Context& dev_ctx,
                      const DenseTensor& x,
51
                      const paddle::optional<DenseTensor>& seed_tensor,
52
                      const Scalar& p,
H
hong 已提交
53 54 55 56 57 58 59 60
                      bool is_test,
                      const std::string& mode,
                      int seed,
                      bool fix_seed,
                      DenseTensor* out,
                      DenseTensor* mask) {
  auto* y = out;
  const auto* x_data = x.data<T>();
61
  T* y_data = dev_ctx.template Alloc<T>(y);
62
  float dropout_prob = p.to<float>();
H
hong 已提交
63 64 65

  auto& dropout_implementation = mode;
  bool upscale_in_train = (dropout_implementation == "upscale_in_train");
66
  if (!is_test && mask) {
67
    auto* mask_data = dev_ctx.template Alloc<uint8_t>(mask);
H
hong 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
    size_t size = phi::product(mask->dims());

    // Special case when dropout_prob is 1.0
    if (dropout_prob == 1.0f) {
      std::memset(y_data, 0, size * sizeof(*y_data));        // NOLINT
      std::memset(mask_data, 0, size * sizeof(*mask_data));  // NOLINT
      return;
    }
    // std::minstd_rand engine;
    // NOTE: fixed seed should only be used in unittest or for debug.
    // Guarantee to use random seed in training.
    int seed_data = 0;
    if (seed_tensor.get_ptr() != nullptr) {
      seed_data = *(seed_tensor->data<int>());
    } else {
      seed_data = fix_seed ? seed : 0;
    }
    auto engine = paddle::framework::GetCPURandomEngine(seed_data);

    std::uniform_real_distribution<float> dist(0, 1);

    for (size_t i = 0; i < size; ++i) {
      if (dist(*engine) < dropout_prob) {
        mask_data[i] = 0;
        y_data[i] = 0;
      } else {
        mask_data[i] = 1;
        if (upscale_in_train) {
          y_data[i] = x_data[i] / static_cast<T>(1.0f - dropout_prob);
        } else {
          y_data[i] = x_data[i];
        }
      }
    }
  } else {
103 104 105 106 107 108 109 110 111
    ComputeDropoutInference<T, Context>(
        dev_ctx, x, dropout_prob, upscale_in_train, y);
  }
}

template <typename T, typename Context>
void DropoutNdKernel(const Context& dev_ctx,
                     const DenseTensor& x,
                     const paddle::optional<DenseTensor>& seed_tensor,
112
                     const Scalar& p,
113 114 115 116 117 118 119 120 121 122
                     bool is_test,
                     const std::string& mode,
                     int seed,
                     bool fix_seed,
                     const std::vector<int>& axis,
                     DenseTensor* out,
                     DenseTensor* mask) {
  auto* y = out;
  const auto* x_data = x.data<T>();
  T* y_data = dev_ctx.template Alloc<T>(y);
123
  float dropout_prob = p.to<float>();
124 125 126

  auto& dropout_implementation = mode;
  bool upscale_in_train = (dropout_implementation == "upscale_in_train");
127
  if (!is_test && mask) {
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
    DenseTensor t_mask;
    t_mask.Resize(mask->dims());
    T* t_mask_data = dev_ctx.template Alloc<T>(&t_mask);
    auto* mask_data = dev_ctx.template Alloc<uint8_t>(mask);
    size_t size = phi::product(mask->dims());

    // Special case when dropout_prob is 1.0
    if (dropout_prob == 1.0f) {
      std::memset(y_data, 0, size * sizeof(*y_data));            // NOLINT
      std::memset(t_mask_data, 0, size * sizeof(*t_mask_data));  // NOLINT
      std::memset(mask_data, 0, size * sizeof(*mask_data));      // NOLINT
      return;
    }
    // std::minstd_rand engine;
    // NOTE: fixed seed should only be used in unittest or for debug.
    // Guarantee to use random seed in training.
    int seed_data = 0;
    if (seed_tensor.get_ptr() != nullptr) {
      seed_data = *(seed_tensor->data<int>());
H
hong 已提交
147
    } else {
148
      seed_data = fix_seed ? seed : 0;
H
hong 已提交
149
    }
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
    auto engine = paddle::framework::GetCPURandomEngine(seed_data);

    std::uniform_real_distribution<float> dist(0, 1);

    for (size_t i = 0; i < size; ++i) {
      if (dist(*engine) < dropout_prob) {
        t_mask_data[i] = 0;
        mask_data[i] = 0;
      } else {
        t_mask_data[i] = 1;
        mask_data[i] = 1;
      }
    }
    auto& x_dims = x.dims();
    DenseTensor broadcast_mask;
    broadcast_mask.Resize(x_dims);
    T* broadcast_mask_data = dev_ctx.template Alloc<T>(&broadcast_mask);

    std::vector<int64_t> mask_bst_dims_vec;
    for (int i = 0; i < x_dims.size(); i++) {
      mask_bst_dims_vec.emplace_back(x_dims[i]);
    }
    IntArray mask_bst_dims(mask_bst_dims_vec);
    ExpandKernel<T, Context>(dev_ctx, t_mask, mask_bst_dims, &broadcast_mask);

    for (auto i = 0; i < x.numel(); i++) {
      if (broadcast_mask_data[i] == static_cast<T>(1)) {
        if (upscale_in_train) {
          y_data[i] = x_data[i] / static_cast<T>(1.0f - dropout_prob);
        } else {
          y_data[i] = x_data[i];
        }
      } else {
        y_data[i] = 0;
      }
    }
  } else {
    ComputeDropoutInference<T, Context>(
        dev_ctx, x, dropout_prob, upscale_in_train, y);
H
hong 已提交
189 190 191 192 193 194 195 196 197 198 199 200
  }
}

}  // namespace phi

PD_REGISTER_KERNEL(dropout,
                   CPU,
                   ALL_LAYOUT,
                   phi::DropoutRawKernel,
                   float,
                   double,
                   phi::dtype::bfloat16) {}
201 202 203

PD_REGISTER_KERNEL(
    dropout_nd, CPU, ALL_LAYOUT, phi::DropoutNdKernel, float, double) {}