fusion_seqconv_eltadd_relu_op.cc 9.6 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/fusion_seqconv_eltadd_relu_op.h"
#include <algorithm>  // for min, max
#include <string>
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/fc_compute.h"

namespace paddle {
namespace operators {

void FusionSeqConvEltAddReluOp::InferShape(
    framework::InferShapeContext* ctx) const {
  PADDLE_ENFORCE(ctx->HasInput("X"),
                 "Input(X) of FusionSeqConvEltAddReluOp should not be null.");
  PADDLE_ENFORCE(
      ctx->HasInput("Filter"),
      "Input(Filter) of FusionSeqConvEltAddReluOp should not be null.");
  PADDLE_ENFORCE(
      ctx->HasInput("Bias"),
      "Input(Bias) of FusionSeqConvEltAddReluOp should not be null.");
  PADDLE_ENFORCE(
      ctx->HasOutput("Out"),
      "Output(Out) of FusionSeqConvEltAddReluOp should not be null.");
  PADDLE_ENFORCE(
      ctx->HasOutput("ColMat"),
      "Output(ColMat) of FusionSeqConvEltAddReluOp should not be null.");

  auto x_dims = ctx->GetInputDim("X");
  auto w_dims = ctx->GetInputDim("Filter");
43
  int context_length = ctx->Attrs().Get<int>("contextLength");
T
tensor-tang 已提交
44 45 46 47 48 49 50
  PADDLE_ENFORCE(
      ctx->Attrs().Get<int>("contextStride") == 1,
      "Currently, FusionSeqConvEltAddReluOp only supports contextStride=1.");
  PADDLE_ENFORCE(x_dims.size() == 2 && w_dims.size() == 2,
                 "Input(X, Filter) should be 2-D tensor.");
  PADDLE_ENFORCE(x_dims.size() == 2 && w_dims.size() == 2,
                 "Input(X, Filter) should be 2-D tensor.");
51 52 53 54 55
  PADDLE_ENFORCE(w_dims[0] == context_length * x_dims[1],
                 "Filter's height should be context_length * "
                 "input_hidden_size .");
  PADDLE_ENFORCE_GT(context_length + ctx->Attrs().Get<int>("contextStart"), 0,
                    "contextStart size should be smaller than contextLength.");
T
tensor-tang 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160

  ctx->SetOutputDim("Out", {x_dims[0], w_dims[1]});
  ctx->SetOutputDim("ColMat", {x_dims[0], w_dims[0]});
  ctx->ShareLoD("X", "Out");
}

framework::OpKernelType FusionSeqConvEltAddReluOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
  return framework::OpKernelType(
      framework::ToDataType(ctx.Input<framework::LoDTensor>("X")->type()),
      ctx.device_context());
}

void FusionSeqConvEltAddReluOpMaker::Make() {
  AddInput("X",
           "(LoDTensor) the input is a LodTensor, which support "
           "variable-time length input sequence. The underlying tensor in "
           "this LoDTensor is a matrix with shape (T X M), where T is the "
           "total time steps in this mini-batch, M is the dim size of x.");
  // PaddingData only support false yet, should be ensured at pass.
  AddInput("Filter",
           "(Tensor) same as the input(Filter) of sequence conv op is an "
           "learnable parameter."
           "This is a tensor with shape (K, N), where K is the "
           "context_length * dim size of x, N is the output feature size.");
  AddInput("Bias",
           "(Tensor) the learnable weights. shape (1, N), where N is the "
           "output feature size");
  AddOutput(
      "Out",
      "(LoDTensor) the output(Out) is a LodTensor, which support "
      "variable-time length output sequence. The underlying tensor in "
      "this LoDTensor is a matrix with shape (T, N), where, T is the "
      "total time steps in this mini-batch, N is the output feature size.");
  AddOutput("ColMat",
            "(Tensor) (T, K), where T is where T is the "
            "total time steps in this mini-batch, K is height of Filter")
      .AsIntermediate();
  AddAttr<int>("contextLength",
               "(int) the contextLength of FusionSeqConvEltAddReluOp is the "
               "height of the convolution kernel.")
      .GreaterThan(0);
  AddAttr<int>("contextStart",
               "(int, default:0) the contextStart of FusionSeqConvEltAddReluOp "
               "represents the beginning of the convolution of the number of "
               "rows of sequence, which can be negative. The negative number "
               "means to pad contextStart time-steps of zeros or learnable "
               "parameters at the beginning of each instance. The positive "
               "number means to skip contextStart time-steps of each "
               "instance.")
      .SetDefault(0);
  AddAttr<int>(
      "contextStride",
      "(int, default:1) the contextStride of FusionSeqConvEltAddReluOp "
      "represents the stride length of convolution kernel. "
      "Currently, FusionSeqConvEltAddReluOp only supports"
      "contextStride=1.")
      .SetDefault(1)
      .GreaterThan(0);
  AddComment(R"DOC(
Fusion Sequence Conv and ElementwiseAdd Operator.
)DOC");
}

template <typename T>
class FusionSeqConvEltAddReluKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    using DeviceContext = paddle::platform::CPUDeviceContext;
    auto* x = ctx.Input<LoDTensor>("X");
    auto* w = ctx.Input<Tensor>("Filter");
    auto* b = ctx.Input<Tensor>("Bias");
    auto* y = ctx.Output<LoDTensor>("Out");
    auto* col = ctx.Output<Tensor>("ColMat");

    auto x_lod = x->lod();
    auto x_dims = x->dims();
    auto w_dims = w->dims();
    PADDLE_ENFORCE_EQ(b->numel(), w_dims[1],
                      "bias size should be equal to output feature size.");
    PADDLE_ENFORCE_EQ(x_lod.size(), 1UL,
                      "Only support one level sequence now.");

    const T* x_data = x->data<T>();
    const T* w_data = w->data<T>();
    const T* b_data = b->data<T>();
    T* y_data = y->mutable_data<T>(ctx.GetPlace());
    T* col_data = col->mutable_data<T>(ctx.GetPlace());

    int context_start = ctx.Attr<int>("contextStart");
    int context_length = ctx.Attr<int>("contextLength");
    int up_pad = std::max(0, -context_start);
    int down_pad = std::max(0, context_start + context_length - 1);
    // im2col
    int src_mat_w = static_cast<int>(x_dims[1]);
    int src_mat_w_sz = src_mat_w * sizeof(T);
    int col_mat_w = static_cast<int>(w_dims[0]);
    int col_mat_w_sz = col_mat_w * sizeof(T);
    for (int i = 0; i < static_cast<int>(x_lod[0].size()) - 1; ++i) {
      int st = x_lod[0][i];
      int ed = x_lod[0][i + 1];
      const T* src_data = x_data + st * src_mat_w;
      T* dst_data = col_data + st * col_mat_w;
      int seq_len = ed - st;
      if (seq_len > up_pad + down_pad) {
161
        // zero all up_pad and fill data
T
tensor-tang 已提交
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
        std::memset(dst_data, 0, up_pad * col_mat_w_sz);
        dst_data = dst_data + up_pad * src_mat_w;
        int copy_size = col_mat_w_sz - up_pad * src_mat_w_sz;
        for (int j = 0; j < up_pad; ++j) {
          // blas.VCOPY?
          std::memcpy(dst_data, src_data, copy_size);
          dst_data += (col_mat_w - src_mat_w);
          copy_size += src_mat_w_sz;
        }
        // fill data
        for (int j = 0; j < seq_len - up_pad - down_pad; ++j) {
          std::memcpy(dst_data, src_data, copy_size);
          dst_data += col_mat_w;
          src_data += src_mat_w;
        }
177
        // zero all down_pad and fill data
T
tensor-tang 已提交
178 179 180 181 182 183 184 185 186 187 188
        std::memset(dst_data, 0, down_pad * col_mat_w_sz);
        copy_size -= src_mat_w_sz;
        for (int j = 0; j < down_pad; ++j) {
          std::memcpy(dst_data, src_data, copy_size);
          dst_data += col_mat_w;
          src_data += src_mat_w;
          copy_size -= src_mat_w_sz;
        }
      } else {
        PADDLE_ENFORCE_GE(context_length, up_pad + down_pad + 1);
        std::memset(dst_data, 0, seq_len * col_mat_w_sz);
189
        dst_data = dst_data + up_pad * src_mat_w;
T
tensor-tang 已提交
190
        int zero_sz = up_pad * src_mat_w_sz;
191
        int cur_src_sz = seq_len * src_mat_w_sz;
T
tensor-tang 已提交
192
        for (int j = 0; j < std::min(up_pad, seq_len); ++j) {
193 194 195
          int copy_size = std::min(cur_src_sz, col_mat_w_sz - zero_sz);
          std::memcpy(dst_data, src_data, copy_size);
          dst_data += (col_mat_w - src_mat_w);
T
tensor-tang 已提交
196 197
          zero_sz -= src_mat_w_sz;
        }
198 199 200
        // from bottom
        dst_data = col_data + ed * col_mat_w;
        src_data = x_data + st * src_mat_w;
T
tensor-tang 已提交
201
        zero_sz = down_pad * src_mat_w_sz;
202 203 204 205 206
        for (int j = 1; j <= std::min(down_pad, seq_len); ++j) {
          int copy_size = std::min(cur_src_sz, col_mat_w_sz - zero_sz);
          std::memcpy(dst_data - (zero_sz + copy_size) / sizeof(T),
                      src_data + std::max(seq_len - j - up_pad, 0) * src_mat_w,
                      copy_size);
T
tensor-tang 已提交
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
          dst_data -= col_mat_w;
          zero_sz -= src_mat_w_sz;
        }
      }
    }
    auto& dev_ctx = ctx.template device_context<DeviceContext>();
    auto blas = math::GetBlas<DeviceContext, T>(dev_ctx);
    math::FCCompute<DeviceContext, T>(blas, x_dims[0], w_dims[1], w_dims[0],
                                      col_data, w_data, y_data, b_data, true);
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(fusion_seqconv_eltadd_relu, ops::FusionSeqConvEltAddReluOp,
                  ops::FusionSeqConvEltAddReluOpMaker,
                  paddle::framework::DefaultGradOpDescMaker<true>);

REGISTER_OP_CPU_KERNEL(fusion_seqconv_eltadd_relu,
                       ops::FusionSeqConvEltAddReluKernel<float>,
                       ops::FusionSeqConvEltAddReluKernel<double>);