expand_v2_op.h 11.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <algorithm>
#include <vector>

#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
23
#include "paddle/fluid/operators/eigen/eigen_function.h"
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105

#define MAX_RANK_SUPPORTED 6

namespace paddle {
namespace operators {
inline std::vector<int> get_expand_shape(
    const framework::ExecutionContext& ctx) {
  if (ctx.HasInput("Shape")) {
    auto* shape_tensor = ctx.Input<framework::LoDTensor>("Shape");
    auto* shape_data = shape_tensor->data<int>();
    framework::Tensor cpu_shape_tensor;
    if (platform::is_gpu_place(shape_tensor->place())) {
      TensorCopySync(*shape_tensor, platform::CPUPlace(), &cpu_shape_tensor);
      shape_data = cpu_shape_tensor.data<int>();
    }
    auto vec_shape =
        std::vector<int>(shape_data, shape_data + shape_tensor->numel());
    return vec_shape;
  }

  auto list_expand_shapes_tensor =
      ctx.MultiInput<framework::Tensor>("expand_shapes_tensor");
  if (list_expand_shapes_tensor.size() > 0) {
    // get tensor from
    std::vector<int> vec_epxand_shape;
    for (size_t i = 0; i < list_expand_shapes_tensor.size(); ++i) {
      auto tensor = list_expand_shapes_tensor[i];
      if (platform::is_gpu_place(tensor->place())) {
        framework::Tensor temp;
        TensorCopySync(*tensor, platform::CPUPlace(), &temp);
        vec_epxand_shape.push_back(*temp.data<int32_t>());
      } else {
        vec_epxand_shape.push_back(*tensor->data<int32_t>());
      }
    }
    return vec_epxand_shape;
  } else {
    return ctx.Attr<std::vector<int>>("shape");
  }
}

using Tensor = framework::Tensor;
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
template <typename T, size_t D, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>;
using framework::To32BitIndex;

template <typename DeviceContext, typename T>
class ExpandV2Kernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto rank = context.Input<Tensor>("X")->dims().size();
    PADDLE_ENFORCE_GE(
        rank, 1,
        platform::errors::InvalidArgument(
            "The rank of the input 'X' for expand_v2 op must be positive, "
            "but the value received is %d.",
            rank));
    PADDLE_ENFORCE_LE(
        rank, MAX_RANK_SUPPORTED,
        platform::errors::InvalidArgument(
            "The rank of the input 'X' for expand_v2 op must be less than "
            "or equal to %d, but the value received is %d.",
            MAX_RANK_SUPPORTED, rank));
    auto expand_shape = get_expand_shape(context);
    auto shape_size = expand_shape.size();
    PADDLE_ENFORCE_GE(
        shape_size, rank,
        platform::errors::InvalidArgument(
            "The number (%d) of elements of 'shape' for expand_v2 op must be "
            "greater than or equal to the rank (%d) of the input 'X'.",
            shape_size, rank));
    PADDLE_ENFORCE_LE(
        shape_size, MAX_RANK_SUPPORTED,
        platform::errors::InvalidArgument(
            "The number (%d) of elements of 'shape' for expand_v2 op must be "
            "less than or equal to %d.",
            shape_size, MAX_RANK_SUPPORTED));
    rank = std::max(rank, static_cast<int>(shape_size));
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
    switch (rank) {
      case 1:
        Expand<1>(context);
        break;
      case 2:
        Expand<2>(context);
        break;
      case 3:
        Expand<3>(context);
        break;
      case 4:
        Expand<4>(context);
        break;
      case 5:
        Expand<5>(context);
        break;
      case 6:
        Expand<6>(context);
        break;
    }
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
  }

 protected:
  template <int Rank>
  void Expand(const framework::ExecutionContext& context) const {
    auto* in0 = context.Input<Tensor>("X");

    auto in_dims = in0->dims();
    auto expand_shape = get_expand_shape(context);
    auto vec_in_dims = framework::vectorize<int>(in_dims);
    auto diff = expand_shape.size() - vec_in_dims.size();
    vec_in_dims.insert(vec_in_dims.begin(), diff, 1);
    std::vector<int> repeat_times(vec_in_dims.size());
    for (size_t i = 0; i < vec_in_dims.size(); ++i) {
      PADDLE_ENFORCE_NE(expand_shape[i], 0,
                        platform::errors::InvalidArgument(
                            "The expanded size cannot be zero."));
      if (i < diff) {
        PADDLE_ENFORCE_GT(
            expand_shape[i], 0,
            platform::errors::InvalidArgument(
                "The expanded size (%d) for non-existing dimensions must be "
                "positive for expand_v2 op.",
                expand_shape[i]));
        repeat_times[i] = expand_shape[i];
      } else if (expand_shape[i] > 0) {
        if (vec_in_dims[i] != 1) {
          PADDLE_ENFORCE_EQ(
              vec_in_dims[i], expand_shape[i],
              platform::errors::InvalidArgument(
                  "The value (%d) of the non-singleton dimension does not match"
                  " the corresponding value (%d) in shape for expand_v2 op.",
                  vec_in_dims[i], expand_shape[i]));
          repeat_times[i] = 1;
        } else {
          repeat_times[i] = expand_shape[i];
        }
      } else {
        PADDLE_ENFORCE_EQ(
            expand_shape[i], -1,
            platform::errors::InvalidArgument(
                "When the value in shape is negative for expand_v2 op, "
                "only -1 is supported, but the value received is %d.",
                expand_shape[i]));
        repeat_times[i] = 1;
      }
    }

    auto* out0 = context.Output<Tensor>("Out");
175
    Eigen::DSizes<Eigen::DenseIndex, Rank> bcast_dims;
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
    for (size_t i = 0; i < repeat_times.size(); ++i) {
      bcast_dims[i] = repeat_times[i];
    }

    framework::DDim new_in_dims = framework::make_ddim(vec_in_dims);
    framework::DDim out_dims(new_in_dims);
    for (size_t i = 0; i < repeat_times.size(); ++i) {
      out_dims[i] *= repeat_times[i];
    }

    out0->Resize(out_dims);
    auto x = EigenTensor<T, Rank>::From(*in0, new_in_dims);
    out0->mutable_data<T>(context.GetPlace());
    auto y = EigenTensor<T, Rank>::From(*out0, out_dims);
    auto& place =
        *context.template device_context<DeviceContext>().eigen_device();
    // use 32-bit index to speed up
    bool use_32bit_index = y.size() < Eigen::NumTraits<int>::highest();
    if (use_32bit_index) {
195 196
      EigenBroadcast<std::decay_t<decltype(place)>, T, Rank>::Eval(
          place, To32BitIndex(y), To32BitIndex(x), bcast_dims);
197
    } else {
198 199
      EigenBroadcast<std::decay_t<decltype(place)>, T, Rank>::Eval(place, y, x,
                                                                   bcast_dims);
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
    }
  }
};

template <typename DeviceContext, typename T>
class ExpandV2GradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* in0 = context.Input<Tensor>("X");
    auto expand_shape = get_expand_shape(context);
    auto x_dims = in0->dims();
    auto vec_in_dims = framework::vectorize<int>(x_dims);
    auto diff = expand_shape.size() - vec_in_dims.size();
    vec_in_dims.insert(vec_in_dims.begin(), diff, 1);
    // 1. reshape_dims_vec is the broadcast parameter.
    // 2. reduce_dims_vec is the dimension parameter to compute gradients. For
    //    each dimension expanded, the gradients should be summed to original
    //    size.
    std::vector<int> repeat_times(vec_in_dims.size());
    for (size_t i = 0; i < vec_in_dims.size(); ++i) {
      if (expand_shape[i] < 0) {
        repeat_times[i] = 1;
      } else {
        repeat_times[i] = expand_shape[i] / vec_in_dims[i];
      }
    }
    std::vector<int> reshape_dims_vec;
    std::vector<int> reduce_dims_vec;
    for (size_t i = 0; i < repeat_times.size(); ++i) {
      reduce_dims_vec.push_back(reshape_dims_vec.size());
      reshape_dims_vec.push_back(repeat_times[i]);
      reshape_dims_vec.push_back(vec_in_dims[i]);
    }

    int dims = reduce_dims_vec.size();

    bool just_copy = true;
    for (size_t i = 0; i < repeat_times.size(); i++) {
      if (repeat_times[i] != 1) {
        just_copy = false;
        break;
      }
    }
    // no need reduce, just copy
    if (just_copy) {
      auto* in0 = context.Input<Tensor>(framework::GradVarName("Out"));
      auto* out0 = context.Output<Tensor>(framework::GradVarName("X"));
      out0->mutable_data<T>(context.GetPlace());
      framework::TensorCopy(*in0, context.GetPlace(), context.device_context(),
                            out0);
    } else {
      PADDLE_ENFORCE_GE(dims, 1,
                        platform::errors::InvalidArgument(
                            "The rank of the input 'Out@GRAD' for "
                            "expand_v2_grad op must be greater than or "
                            "equal to 1, but the value received is %d.",
                            dims));
      PADDLE_ENFORCE_LE(dims, MAX_RANK_SUPPORTED,
                        platform::errors::InvalidArgument(
                            "The rank of the input 'Out@GRAD' for "
                            "expand_v2_grad op must be less than or equal "
                            "to %d, but the value received is %d.",
                            MAX_RANK_SUPPORTED, dims));
263
      switch (dims) {
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
        case 1:
          ExpandBackward<1>(context, reshape_dims_vec, reduce_dims_vec);
          break;
        case 2:
          ExpandBackward<2>(context, reshape_dims_vec, reduce_dims_vec);
          break;
        case 3:
          ExpandBackward<3>(context, reshape_dims_vec, reduce_dims_vec);
          break;
        case 4:
          ExpandBackward<4>(context, reshape_dims_vec, reduce_dims_vec);
          break;
        case 5:
          ExpandBackward<5>(context, reshape_dims_vec, reduce_dims_vec);
          break;
        case 6:
          ExpandBackward<6>(context, reshape_dims_vec, reduce_dims_vec);
          break;
282 283 284 285 286 287
        default:
          PADDLE_THROW(platform::errors::InvalidArgument(
              "Only support tensor with rank being between 1 and 6. But "
              "received tensor's rank = %d.",
              dims));
      }
288 289 290 291 292 293 294 295 296 297 298 299 300 301
    }
  }

 protected:
  template <int Dims>
  void ExpandBackward(const framework::ExecutionContext& context,
                      const std::vector<int>& reshape_dims_vec,
                      const std::vector<int>& reduce_dims_vec) const {
    size_t reshape_size = reshape_dims_vec.size();
    size_t reduce_size = reduce_dims_vec.size();
    auto* in0 = context.Input<Tensor>(framework::GradVarName("Out"));
    auto* out0 = context.Output<Tensor>(framework::GradVarName("X"));
    out0->mutable_data<T>(context.GetPlace());
    auto x_grad = EigenVector<T>::Flatten(*out0);
302
    Eigen::DSizes<Eigen::DenseIndex, Dims * 2> reshape_dims;
303 304 305
    for (size_t i = 0; i < reshape_size; ++i) {
      reshape_dims[i] = reshape_dims_vec[i];
    }
306
    Eigen::DSizes<Eigen::DenseIndex, Dims> reduce_dims;
307 308 309 310
    for (size_t i = 0; i < reduce_size; ++i) {
      reduce_dims[i] = reduce_dims_vec[i];
    }
    auto out_grad = EigenVector<T>::Flatten(*in0);
311 312 313 314
    auto& place =
        *context.template device_context<DeviceContext>().eigen_device();
    EigenBroadcastGrad<std::decay_t<decltype(place)>, T, Dims>::Eval(
        place, x_grad, out_grad, reduce_dims, reshape_dims);
315 316 317 318 319
  }
};

}  // namespace operators
}  // namespace paddle