framework.py 75.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
Q
qiaolongfei 已提交
18
import contextlib
P
peizhilin 已提交
19
import os
F
fengjiayi 已提交
20
import re
21
import six
22
import sys
23

Y
Yu Yang 已提交
24
import numpy as np
Q
qiaolongfei 已提交
25

M
minqiyang 已提交
26
from .. import compat as cpt
27
from .proto import framework_pb2
28 29
try:
    from . import core
30
except ImportError as e:
P
peizhilin 已提交
31 32 33 34 35 36 37 38 39 40 41 42
    if os.name == 'nt':
        raise ImportError(
            """NOTE: You may need to run \"set PATH=c:\python27\lib:%PATH%\"
        if you encounters \"mkldnn.dll not found\" errors. If you have python
        installed in other directory, replace \"c:\python27\lib" with your own
        directory. The original error is: \n""" + cpt.get_exception_message(e))
    else:
        raise ImportError(
            """NOTE: You may need to run \"export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH\"
        if you encounters \"libmkldnn.so not found\" errors. If you have python
        installed in other directory, replace \"/usr/local/lib\" with your own
        directory. The original error is: \n""" + cpt.get_exception_message(e))
43
except Exception as e:
44
    raise e
45
from . import unique_name
Y
Yu Yang 已提交
46

47
__all__ = [
48 49 50 51
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
52
    'name_scope',
53
]
Y
Yu Yang 已提交
54

Q
qiaolongfei 已提交
55 56 57 58
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
59 60
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

61 62 63 64 65 66 67 68 69 70
_imperative_tracer_ = None


def _in_imperative_mode():
    return _imperative_tracer_ is not None


def _imperative_tracer():
    return _imperative_tracer_

W
Wu Yi 已提交
71

72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


@contextlib.contextmanager
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

    Note: This should only used for debugging and visualization purpose.
    Don't use it for serious analysis such as graph/program transformations.

    Args:
        prefix(str): prefix.

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
111

112 113 114 115
          with name_scope("encoder"):
             ...
          with name_scope("decoder"):
             ...
T
Tink_Y 已提交
116 117
          with name_scope("attention"):
             ...
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
    """
    # TODO(panyx0718): Only [0-9a-z].
    assert prefix, "namescope prefix cannot be empty."
    global _name_scope
    _name_scope = _name_scope.child(prefix)
    yield
    _name_scope = _name_scope.parent()


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
137 138 139
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
140 141 142 143


def grad_var_name(var_name):
    """
144 145
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
146 147 148
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
149

150
def convert_np_dtype_to_dtype_(np_dtype):
151 152
    """
    Convert the data type in numpy to the data type in Paddle
153

154
    Args:
155
        np_dtype(np.dtype): the data type in numpy.
156

157 158
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
159 160

    """
161 162
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
163
        return core.VarDesc.VarType.FP32
164
    elif dtype == np.float64:
165
        return core.VarDesc.VarType.FP64
166
    elif dtype == np.float16:
167
        return core.VarDesc.VarType.FP16
168
    elif dtype == np.int32:
169
        return core.VarDesc.VarType.INT32
170
    elif dtype == np.int16:
171
        return core.VarDesc.VarType.INT16
172
    elif dtype == np.int64:
173
        return core.VarDesc.VarType.INT64
174
    elif dtype == np.bool:
175
        return core.VarDesc.VarType.BOOL
176 177
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
178 179
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
180 181
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
182
    else:
M
minqiyang 已提交
183
        raise ValueError("Not supported numpy dtype %s" % dtype)
184 185 186


def dtype_is_floating(dtype):
187 188 189
    """
    Check the data type is floating or not.
    Args:
190
        dtype(np.dtype|core.VarDesc.VarType): data type.
191 192 193 194 195
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
196
    if not isinstance(dtype, core.VarDesc.VarType):
197 198
        dtype = convert_np_dtype_to_dtype_(dtype)

199 200 201 202
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
203 204


Y
Yang Yang(Tony) 已提交
205
def _debug_string_(proto, throw_on_error=True):
206 207 208 209 210 211 212 213 214 215 216
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
217
    error_fields = list()
Y
Yang Yang(Tony) 已提交
218
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
219 220
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
221 222 223
    return proto.__str__()


X
Xin Pan 已提交
224
class Variable(object):
225
    """
226 227 228
    In Fluid, every input and output of an operator is a variable. In most
    cases, variables are used for holding different kinds of data or training
    labels. A variable belongs to a block. All variable has its own name and
229
    two variables in different blocks could have the same name.
230

231 232
    There are many kinds of variables. Each kind of them has its own attributes
    and usages. Please reference the framework.proto for details.
233

234
    Most of a Variable's member variables can be setted to be None. It mean
235
    it is not available or will be specified later.
236 237

    Args:
238
        block(Block): The block that the variable belongs to.
239 240
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
241 242
        name(str|None): The name of the variable. If setted None, it will be
            generated automatically. Default: None
243
        shape(tuple|list|None): The shape of the variable. -1 means the batch size.
244
            Some kinds of variable do not contain shape, just set it to None.
245 246 247
            Default: None
        dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable.
            Default: None
248
        lod_level (int|None): The level of lod tensor. 0 means it is not a time
249
            series data.
250
            Default: None
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
        capacity (int|None): The capacity of Channel variable. Ignored for other
            types. Default: None
        persistable (bool|None): True if the variable is persistable. A persistable
            variable will not be deleted after an iteration ending. Defaults: None.
        error_clip (BaseErrorClipAttr|None): The error clip attributes of the
            corresponding gradient variable. Default: None
        stop_gradient (bool): True if the variable will stop to calculate its
            gradients when backward. Default: False.
        is_data (bool): True if the variable is an input data. Default: False

    Notes:
        The constructor of Variable should not be invoked directly. Please
        use `Block.create_var` to create a variable.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
273 274
    """

Y
Yu Yang 已提交
275 276
    def __init__(self,
                 block,
Y
Yu Yang 已提交
277
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
278 279 280 281
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
282
                 capacity=None,
Q
QI JUN 已提交
283
                 persistable=None,
F
fengjiayi 已提交
284
                 error_clip=None,
Y
Yu Yang 已提交
285
                 stop_gradient=False,
F
fengjiayi 已提交
286
                 is_data=False,
Y
Yu Yang 已提交
287
                 **kwargs):
Y
Yu Yang 已提交
288
        self.block = block
F
fengjiayi 已提交
289
        self.error_clip = error_clip
Y
Yu Yang 已提交
290 291

        if name is None:
Y
Yu Yang 已提交
292
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
293
        is_new_var = False
M
minqiyang 已提交
294
        name = cpt.to_text(name)
M
minqiyang 已提交
295
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
D
Dong Zhihong 已提交
296 297

        if self.desc is None:
M
minqiyang 已提交
298
            self.desc = self.block.desc.var(cpt.to_bytes(name))
Y
Yu Yang 已提交
299
            is_new_var = True
Y
Yu Yang 已提交
300

Y
Yu Yang 已提交
301 302 303 304 305 306 307 308
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))

Y
Yu Yang 已提交
309
        if shape is not None:
Y
Yu Yang 已提交
310
            if is_new_var:
311
                self.desc.set_shape(shape)
Y
Yu Yang 已提交
312 313 314 315 316 317 318 319
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
Y
Yu Yang 已提交
320
        if dtype is not None:
321
            if not isinstance(dtype, core.VarDesc.VarType):
322
                dtype = convert_np_dtype_to_dtype_(dtype)
Y
Yu Yang 已提交
323
            if is_new_var:
F
fengjiayi 已提交
324
                self.desc.set_dtype(dtype)
Y
Yu Yang 已提交
325
            else:
F
fengjiayi 已提交
326
                old_dtype = self.dtype
Q
QI JUN 已提交
327
                if dtype != old_dtype:
Y
Yu Yang 已提交
328 329 330 331 332
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))
Y
Yu Yang 已提交
333 334

        if lod_level is not None:
Y
Yu Yang 已提交
335
            if is_new_var:
336
                self.desc.set_lod_level(lod_level)
Y
Yu Yang 已提交
337 338 339 340 341 342 343
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
344 345 346 347 348 349 350 351 352 353 354
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))

355 356 357 358 359 360 361 362
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass

Y
Yu Yang 已提交
363
        self.block.vars[name] = self
Y
Yu Yang 已提交
364
        self.op = None
F
fengjiayi 已提交
365
        self.is_data = is_data
X
Xin Pan 已提交
366 367 368
        if _in_imperative_mode():
            self._ivar = core.VarBase()
            self._ivar.desc = self.desc
369
            self._ivar.stop_gradient = stop_gradient
Y
Yu Yang 已提交
370

371
    def _numpy(self):
M
minqiyang 已提交
372
        scope = _imperative_tracer().get_scope()
373 374 375 376
        tensor = core.get_variable_tensor(scope, self.desc.name())
        return np.array(tensor)

    def _backward(self):
377
        scope = _imperative_tracer().get_scope()
X
Xin Pan 已提交
378
        self._ivar._run_backward(scope)
379 380

    def _gradient(self):
X
Xin Pan 已提交
381
        return np.array(self._ivar._grad())
382

383
    def __str__(self):
Y
Yang Yang(Tony) 已提交
384 385
        return self.to_string(True)

F
update  
fengjiayi 已提交
386
    def to_string(self, throw_on_error, with_details=False):
387 388 389 390
        """
        Get debug string.

        Args:
391 392
            throw_on_error(bool): True if raise an exception when self is
                not initialized.
F
update  
fengjiayi 已提交
393
            with_details(bool): more details about variables and parameters
394 395
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False;
396

397 398
        Returns:
            str: The debug string.
399
        """
F
update  
fengjiayi 已提交
400 401
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
402
        protostr = self.desc.serialize_to_string()
403
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
404 405 406 407
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
408 409
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
410
        return res_str
411 412 413

    __repr__ = __str__

W
Wu Yi 已提交
414
    def _set_desc(self, input):
415 416 417 418 419 420 421 422 423
        """
        Set the variable description.

        Args:
            input(core.VarDesc): The new VarDesc.

        Returns:
            None
        """
424 425
        self.desc = input

426 427 428 429 430 431 432 433
    @property
    def _stop_gradient(self):
        return self._ivar.stop_gradient

    @_stop_gradient.setter
    def _stop_gradient(self, s):
        self._ivar.stop_gradient = s

434 435 436 437
    @property
    def persistable(self):
        return self.desc.persistable()

Y
Yu Yang 已提交
438 439 440 441
    @persistable.setter
    def persistable(self, p):
        self.desc.set_persistable(p)

Y
Yu Yang 已提交
442 443
    @property
    def name(self):
M
minqiyang 已提交
444
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
445

T
typhoonzero 已提交
446 447 448 449
    @name.setter
    def name(self, new_name):
        self.desc.set_name(new_name)

Y
Yu Yang 已提交
450 451 452
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
453
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
454 455

    @property
F
fengjiayi 已提交
456 457
    def dtype(self):
        return self.desc.dtype()
Y
Yu Yang 已提交
458 459 460

    @property
    def lod_level(self):
461
        return self.desc.lod_level()
Y
Yu Yang 已提交
462

Y
Yu Yang 已提交
463 464 465 466
    @property
    def type(self):
        return self.desc.type()

W
Wu Yi 已提交
467
    def _set_error_clip(self, error_clip):
468 469 470 471 472 473 474 475 476
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
477 478
        self.error_clip = error_clip

Y
Yu Yang 已提交
479

F
fengjiayi 已提交
480 481 482
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
483

484 485
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
486 487 488 489
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
490
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
491 492 493 494 495
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
496 497 498 499
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
500 501 502 503 504 505 506 507 508
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
509
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
510 511 512 513 514 515
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
516 517 518 519 520 521 522 523
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
524 525
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
526 527
        return self.op_proto_map[type]

528 529 530 531
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
532
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
533
            core.op_proto_and_checker_maker.kOpNameScopeAttrName()
534 535
        }

F
fengjiayi 已提交
536

X
Xin Pan 已提交
537
class Operator(object):
538
    """
539 540 541 542 543 544 545
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
546
        type(str): The type of operator. Default None.
547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
567
        Block.append_op or Block._prepend_op instead.
568 569 570 571 572 573 574 575 576 577

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
578
    """
579 580 581
    OP_WITHOUT_KERNEL_SET = {
        'feed', 'fetch', 'save', 'load', 'recurrent', 'go',
        'rnn_memory_helper_grad', 'conditional_block', 'while', 'send', 'recv',
X
Xin Pan 已提交
582 583
        'listen_and_serv', 'save_combine', 'load_combine', 'ncclInit', 'select',
        'checkpoint_notify', 'gen_nccl_id'
584
    }
585

Y
Yu Yang 已提交
586 587
    def __init__(self,
                 block,
Y
Yu Yang 已提交
588
                 desc,
Y
Yu Yang 已提交
589 590 591
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
592 593
                 attrs=None,
                 stop_gradient=False):
Y
Yu Yang 已提交
594
        self.block = block
Y
Yu Yang 已提交
595
        self.desc = desc
G
gongweibao 已提交
596 597 598 599 600
        # note: not add self.attrs here:
        # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
        op_attrs = attrs
        if op_attrs is None:
            op_attrs = dict()
Y
yuyang18 已提交
601 602 603 604
        del attrs

        op_maker = core.op_proto_and_checker_maker

G
gongweibao 已提交
605 606
        if op_maker.kOpRoleAttrName() not in op_attrs:
            op_attrs[op_maker.kOpRoleAttrName()] = self.block.program.op_role
Y
yuyang18 已提交
607 608 609

        role_var_name = op_maker.kOpRoleVarAttrName()
        if len(self.block.program.
G
gongweibao 已提交
610 611
               op_role_var) != 0 and role_var_name not in op_attrs:
            op_attrs[role_var_name] = self.block.program.op_role_var
Y
yuyang18 已提交
612

G
gongweibao 已提交
613 614
        if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
            del op_attrs[role_var_name]
Y
yuyang18 已提交
615

F
fengjiayi 已提交
616 617 618 619 620
        if len(self.desc.type()) != 0:
            return
        if type is None:
            raise ValueError(
                "`type` to initilized an Operator can not be None.")
F
Update  
fengjiayi 已提交
621
        self.desc.set_type(type)
F
fengjiayi 已提交
622
        proto = OpProtoHolder.instance().get_op_proto(type)
623

624 625 626
        namescope_var_name = op_maker.kOpNameScopeAttrName()
        op_attrs[namescope_var_name] = _full_name_scope()

Y
Yang Yang(Tony) 已提交
627 628
        def find_name(var_list, name):
            for var_name in var_list:
Q
Qiao Longfei 已提交
629
                if var_list[var_name] is not None and var_name == name:
Y
Yang Yang(Tony) 已提交
630 631
                    return True
            return False
Q
QI JUN 已提交
632

Y
Yang Yang(Tony) 已提交
633 634 635 636 637 638 639
        if inputs is not None:
            for in_proto in proto.inputs:
                found = find_name(inputs, in_proto.name)
                assert found or in_proto.dispensable, "Input {} not found".format(
                    in_proto.name)

                if found:
640 641 642 643
                    in_args = inputs[in_proto.name]
                    if not isinstance(in_args, list):
                        in_args = [in_args]
                    if not in_proto.duplicable and len(in_args) > 1:
Y
Yang Yang(Tony) 已提交
644 645
                        raise ValueError(
                            "Input %s expects only one input, but %d are given."
646 647 648
                            % (in_proto.name, len(in_args)))
                    in_arg_names = []
                    for arg in in_args:
649
                        if isinstance(arg, six.string_types):
Y
Yang Yu 已提交
650
                            in_arg_names.append(arg)
651 652
                        elif isinstance(arg, six.binary_type):
                            in_arg_names.append(arg.decode())
Y
Yang Yu 已提交
653
                        else:
M
minqiyang 已提交
654
                            in_arg_names.append(cpt.to_text(arg.name))
655
                    self.desc.set_input(in_proto.name, in_arg_names)
Y
Yang Yang(Tony) 已提交
656 657
                else:
                    self.desc.set_input(in_proto.name, [])
F
Update  
fengjiayi 已提交
658

Y
Yu Yang 已提交
659
        if outputs is not None:
660 661 662 663 664 665 666
            given = set()
            need = set()
            for n in outputs:
                given.add(n)
            for m in proto.outputs:
                need.add(m.name)
            if not given == need:
C
caoying03 已提交
667 668
                raise ValueError(("Incorrect setting for output(s) of "
                                  "operator \"%s\". Need: [%s] Given: [%s]") %
669 670 671
                                 (type,
                                  ", ".join(six.binary_type(e) for e in need),
                                  ", ".join(six.binary_type(e) for e in given)))
672

F
fengjiayi 已提交
673
            for out_proto in proto.outputs:
674 675 676 677
                out_args = outputs[out_proto.name]
                if not isinstance(out_args, list):
                    out_args = [out_args]
                if not out_proto.duplicable and len(out_args) > 1:
F
Update  
fengjiayi 已提交
678 679
                    raise ValueError(
                        "Output %s expects only one output, but %d are given." %
680 681 682
                        (out_proto.name, len(out_args)))
                out_arg_names = []
                for arg in out_args:
M
minqiyang 已提交
683
                    out_arg_names.append(cpt.to_text(arg.name))
684 685
                    arg.op = self
                self.desc.set_output(out_proto.name, out_arg_names)
F
Update  
fengjiayi 已提交
686

G
gongweibao 已提交
687 688
        if op_attrs is not None:
            if not isinstance(op_attrs, dict):
689
                raise TypeError("'attrs' should be a dict.")
F
fengjiayi 已提交
690
            for attr in proto.attrs:
F
Update  
fengjiayi 已提交
691
                attr_name = attr.name
G
gongweibao 已提交
692
                if (attr_name not in op_attrs) or (op_attrs[attr_name] is None):
F
Update  
fengjiayi 已提交
693
                    continue
G
gongweibao 已提交
694
                attr_val = op_attrs[attr_name]
G
gongweibao 已提交
695 696
                self._update_desc_attr(attr_name, attr_val)

697
        self.desc.check_attrs()
W
Wu Yi 已提交
698
        if self._has_kernel(type):
Q
QI JUN 已提交
699
            self.desc.infer_var_type(self.block.desc)
Y
Yu Yang 已提交
700
            self.desc.infer_shape(self.block.desc)
X
Xin Pan 已提交
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
        if _in_imperative_mode():
            self.iop = core.OpBase()
            self.iop.desc = self.desc
            self.inputs = []
            if inputs is not None:
                for inp in inputs.values():
                    if isinstance(inp, Variable):
                        self.inputs.append(inp)
                    elif isinstance(inp, list) or isinstance(inp, tuple):
                        self.inputs.extend(inp[:])
            self.outputs = []
            if outputs is not None:
                for out in outputs.values():
                    if isinstance(out, Variable):
                        self.outputs.append(out)
                    elif isinstance(out, list) or isinstance(out, tuple):
                        self.outputs.extend(out[:])
F
fengjiayi 已提交
718

W
Wu Yi 已提交
719
    def _has_kernel(self, op_type):
720 721
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
722
    def to_string(self, throw_on_error):
723
        """
724 725
        Get debug string.

726
        Args:
727 728
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
729

730 731
        Returns:
            str: The debug string.
732 733

        """
734
        protostr = self.desc.serialize_to_string()
735
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
736 737 738 739
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
740 741 742

    __repr__ = __str__

F
fengjiayi 已提交
743 744 745 746 747
    @property
    def type(self):
        return self.desc.type()

    def input(self, name):
748
        """
749
        Get the input arguments according to the input parameter name.
750

751 752
        Args:
            name(str): The input parameter name.
753

754 755 756
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
757
        """
F
fengjiayi 已提交
758 759
        return self.desc.input(name)

W
Wu Yi 已提交
760
    def _rename_input(self, old_name, new_name):
761 762 763 764 765 766 767 768 769 770
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
771
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
772

W
Wu Yi 已提交
773
    def _rename_output(self, old_name, new_name):
774 775 776 777 778 779 780 781 782 783
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
784
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
785

F
fengjiayi 已提交
786 787 788 789
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
790 791 792 793 794 795 796 797
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
798
    def output(self, name):
799
        """
800
        Get output arguments by the output parameter name.
801

802 803
        Args:
            name(str): The output parameter name.
804

805 806 807
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
808
        """
F
fengjiayi 已提交
809 810 811 812 813 814
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

815 816 817 818 819 820 821 822
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
823
    def has_attr(self, name):
824
        """
825 826
        Whether this Operator has the attribute with name or not.

827
        Args:
828
            name(str): the attribute name.
829

830 831
        Returns:
            bool: True if has this attribute.
832 833

        """
F
fengjiayi 已提交
834 835 836
        return self.desc.has_attr(name)

    def attr_type(self, name):
837
        """
838
        Get the type of attribute by attribute's name.
839

840 841
        Args:
            name(str): the attribute name.
842

843 844
        Returns:
            core.AttrType: the attribute type.
845
        """
F
fengjiayi 已提交
846 847
        return self.desc.attr_type(name)

W
Wu Yi 已提交
848
    def _set_attr(self, name, val):
849 850 851 852 853 854 855 856 857 858
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
859 860 861 862 863 864 865 866 867 868 869 870 871
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
872 873
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
874 875
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
876
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
877 878 879 880
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
881
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
882

F
fengjiayi 已提交
883 884 885 886 887
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
888
        """
889 890
        Get the attribute by name.

891
        Args:
892
            name(str): the attribute name.
893

894 895
        Returns:
            bool|int|str|float|list: The attribute value. The return value
896 897
            can be any valid attribute type.
        """
F
fengjiayi 已提交
898
        return self.desc.attr(name)
Y
Yu Yang 已提交
899

W
Wu Yi 已提交
900
    def _block_attr_id(self, name):
901
        """
G
gongweibao 已提交
902
        Get the block attribute's id by name.
903

904 905
        Args:
            name(str): the attribute name.
906

907 908
        Returns:
            int: the block index.
909
        """
W
Wu Yi 已提交
910
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
911

W
Wu Yi 已提交
912
    def _block_attr(self, name):
G
gongweibao 已提交
913 914 915 916 917 918 919 920 921 922
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
923
        id = self._block_attr_id(name)
G
gongweibao 已提交
924 925 926
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
927
    def _blocks_attr(self, name):
G
gongweibao 已提交
928 929 930 931 932 933 934 935 936 937
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
938
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
939 940 941 942 943
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
944
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
945 946 947 948 949 950 951 952 953 954
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
955
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
956

J
JiayiFeng 已提交
957
    def all_attrs(self):
F
fengjiayi 已提交
958
        """
959 960 961
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
962
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
963 964 965 966
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
967 968
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
969
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
970 971 972
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
973
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
974 975 976 977
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
978 979
        return attr_map

Y
Yu Yang 已提交
980

Y
Yu Yang 已提交
981
class Block(object):
982 983 984 985 986 987 988 989 990 991 992 993 994 995
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
996
        use `Program._create_block()` to create a block.
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
1011
    def __init__(self, program, idx):
Y
Yu Yang 已提交
1012
        self.desc = program.desc.block(idx)
1013
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
1014
        self.ops = list()  # operator list
Y
Yu Yang 已提交
1015
        self.program = program
1016
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
1017

1018
    def __str__(self):
Y
Yang Yang(Tony) 已提交
1019 1020
        return self.to_string(True)

F
fengjiayi 已提交
1021 1022
    def to_string(self, throw_on_error, with_details=False):
        """
1023 1024
        Get debug string.

F
fengjiayi 已提交
1025 1026
        Args:
            throw_on_error(bool): raise exception when self is not initialized
1027
                when throw_on_error is True.
F
update  
fengjiayi 已提交
1028
            with_details(bool): more details about variables and parameters
1029 1030
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
1031

1032 1033
        Returns:
            str: The debug string.
F
fengjiayi 已提交
1034 1035 1036 1037
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
1038
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
1039 1040
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
1041
            for var in list(self.vars.values()):
F
fengjiayi 已提交
1042
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
1043
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
1044
            for op in self.ops:
F
fengjiayi 已提交
1045 1046
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
1047 1048 1049
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
1050 1051
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1052 1053
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1054 1055 1056

    __repr__ = __str__

Y
Yu Yang 已提交
1057 1058
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
1059
        return self.desc.parent
Y
Yu Yang 已提交
1060

Y
Yu Yang 已提交
1061 1062 1063 1064
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
1065
    def _set_forward_block_idx(self, idx):
1066 1067 1068 1069 1070 1071 1072 1073 1074
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
1075
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
1076

Y
Yu Yang 已提交
1077 1078
    @property
    def idx(self):
Y
Yu Yang 已提交
1079
        return self.desc.id
Y
Yu Yang 已提交
1080

Q
Qiao Longfei 已提交
1081
    def var(self, name):
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
1095
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
1096 1097 1098
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
1099 1100
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
1101
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
1102
        return v
Q
Qiao Longfei 已提交
1103

X
Xin Pan 已提交
1104
    def _find_var_recursive(self, name):
1105 1106 1107 1108 1109 1110 1111
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
1112
            Variable: the Variable with the giving name. Or None if not found.
1113
        """
Y
Yu Yang 已提交
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
1138
        return None
Y
Yu Yang 已提交
1139

X
Xin Pan 已提交
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
1159

Q
Qiao Longfei 已提交
1160
    def all_parameters(self):
1161
        return list(self.iter_parameters())
1162

1163
    def iter_parameters(self):
M
minqiyang 已提交
1164
        return (item[1] for item in six.iteritems(self.vars)
1165
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
1166

Y
Yu Yang 已提交
1167
    def create_var(self, *args, **kwargs):
1168
        var = Variable(block=self, *args, **kwargs)
1169 1170
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
1171
        return var
Y
Yu Yang 已提交
1172

Q
Qiao Longfei 已提交
1173 1174 1175
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
1176
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
1177 1178
        """
        Rename variable in vars and ops' inputs and outputs
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
1191
        """
M
minqiyang 已提交
1192 1193
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
1194

T
typhoonzero 已提交
1195
        if not self.has_var(name):
1196
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
1197 1198
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
1199
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
1200 1201 1202 1203 1204 1205 1206
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
1207
            var_type = "Variable"
T
wip  
typhoonzero 已提交
1208 1209 1210 1211
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
1212
        orig_var_type = v.type
M
minqiyang 已提交
1213
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
1214
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
1215
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
1216
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
1217 1218 1219 1220
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
1221
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1222 1223 1224 1225 1226 1227 1228
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
1229
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
1230 1231
            var = Variable(
                self,
T
typhoonzero 已提交
1232
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1233 1234 1235 1236
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
1237
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
1238 1239 1240
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
1241
        self._sync_with_cpp()
1242
        return var
T
typhoonzero 已提交
1243

W
Wu Yi 已提交
1244 1245
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
1246
        self.desc._remove_var(cpt.to_bytes(name))
1247 1248
        del self.vars[name]

Y
Yu Yang 已提交
1249 1250
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
1251
        param = Parameter(global_block, *args, **kwargs)
1252
        if 'initializer' in kwargs:
1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
1273
        return param
Y
Yu Yang 已提交
1274

Y
Yu Yang 已提交
1275
    def append_op(self, *args, **kwargs):
1276 1277 1278 1279 1280 1281
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
Y
Yu Yang 已提交
1282
        op_desc = self.desc.append_op()
1283
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
M
minqiyang 已提交
1284 1285
        print("append_op", kwargs.get("type"), kwargs.get("stop_gradient",
                                                          False))
1286
        if _in_imperative_mode():
X
Xin Pan 已提交
1287
            _imperative_tracer().trace(op.iop, [v._ivar for v in op.inputs],
M
minqiyang 已提交
1288 1289
                                       [v._ivar for v in op.outputs], self.desc,
                                       kwargs.get("stop_gradient", False))
Y
Yu Yang 已提交
1290 1291 1292
        self.ops.append(op)
        return op

W
Wu Yi 已提交
1293
    def _insert_op(self, index, *args, **kwargs):
1294 1295 1296 1297 1298 1299 1300 1301 1302
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
1303 1304
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
1305 1306 1307 1308
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
1309
    def _remove_op(self, index):
1310 1311 1312 1313 1314 1315 1316 1317 1318
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
1319 1320
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
1321 1322
        del self.ops[index]

W
Wu Yi 已提交
1323
    def _slice_ops(self, start, end):
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
1334
        return self.ops[start:end]
Y
Yancey1989 已提交
1335

W
Wu Yi 已提交
1336 1337
    def _prepend_op(self, *args, **kwargs):
        op_desc = self.desc._prepend_op()
Y
Yu Yang 已提交
1338
        op = Operator(self, op_desc, *args, **kwargs)
M
minqiyang 已提交
1339 1340
        print("prepend_op", kwargs.get("type"), kwargs.get("stop_gradient",
                                                           False))
M
minqiyang 已提交
1341 1342
        if _in_imperative_mode():
            _imperative_tracer().trace(op.iop, [v._ivar for v in op.inputs],
M
minqiyang 已提交
1343 1344
                                       [v._ivar for v in op.outputs], self.desc,
                                       kwargs.get("stop_gradient", False))
Q
qiaolongfei 已提交
1345
        self.ops.insert(0, op)
Y
Yu Yang 已提交
1346 1347
        return op

W
Wu Yi 已提交
1348
    def _sync_with_cpp(self):
1349
        """
1350 1351
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
1352
        """
Q
Qiao Longfei 已提交
1353 1354 1355 1356 1357
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

1358
        # sync variables removed from c++ end
1359
        for var in list(self.vars.keys()):
M
minqiyang 已提交
1360
            if not self.desc.find_var(cpt.to_bytes(var)):
1361 1362
                self.vars.pop(var)

Q
Qiao Longfei 已提交
1363
        # sync operators from cpp
1364 1365 1366 1367
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
1384 1385 1386 1387 1388

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
1389
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
1390 1391 1392 1393 1394 1395 1396

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
1410 1411 1412 1413
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
1414
    def _copy_param_info_from(self, other):
1415
        """
1416 1417
        Copy the information of parameters from the other block.

1418
        Args:
1419 1420 1421 1422 1423
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
1424 1425 1426 1427 1428

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
1429 1430
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
1431
        for p in other.iter_parameters():
1432 1433 1434
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
1435
                raise ValueError("_copy_param_info_from should be invoked with "
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
1448
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
1449
                error_clip=p.error_clip,
1450 1451 1452
                name=v.name)
            self.vars[new_p.name] = new_p

W
Wu Yi 已提交
1453
    def _clone_variable(self, var):
1454 1455
        """
        Clone a variable into current block.
1456

1457 1458 1459 1460
        Args:
            var: the variable to be cloned.

        Returns:
1461
            Variable: the new  variable cloned from 'var' in current block.
1462 1463
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
1464 1465 1466 1467 1468
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
1469 1470
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
1471
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
1472 1473 1474 1475 1476 1477
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
F
fengjiayi 已提交
1478 1479
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1480 1481 1482 1483 1484 1485 1486
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
F
fengjiayi 已提交
1487 1488
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1489
        return ret_var
1490

Y
Yu Yang 已提交
1491 1492

class Program(object):
D
dzhwinter 已提交
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
    """
    Python Program. Beneath it is a ProgramDesc, which is used for
    create c++ Program. A program is a self-contained programing
    language like container. It has at least one Block, when the
    control flow op like conditional_block, while_op is included,
    it will contains nested block.
    Please reference the framework.proto for details.

    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
Y
yuyang18 已提交
1504
    default_main_program run in every mini batch and adjust the weights.
D
dzhwinter 已提交
1505 1506

    Returns:
Y
yuyang18 已提交
1507
        A empty program.
D
dzhwinter 已提交
1508 1509

    Examples:
Y
yuyang18 已提交
1510 1511 1512 1513 1514 1515
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program=main_program, startup_program=startup_program):
        >>>     fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
        >>>     fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
        >>>     fluid.layers.fc(name="fc", shape=[10], dtype='float32', act="relu")
D
dzhwinter 已提交
1516 1517 1518

    """

1519 1520
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
1521 1522
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
1523
        self._seed = 0
Y
yuyang18 已提交
1524
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
Y
yuyang18 已提交
1525
        self._op_role_var = []
T
tangwei12 已提交
1526 1527 1528 1529

        # for distribute
        self._is_distributed = False
        self._is_chief = False
T
tangwei12 已提交
1530
        self._slice_vars_and_attrs = []
T
tangwei12 已提交
1531
        self._endpoints = []
1532
        self._trainers_endpoints = []
T
tangwei12 已提交
1533
        self._distributed_lookup_table = None
Y
yuyang18 已提交
1534 1535 1536

    @property
    def op_role(self):
Y
yuyang18 已提交
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
        parameter gradient of backward (use :code:`op_role_var` to get this
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
1550 1551 1552 1553 1554 1555 1556 1557
        return self._current_role

    @op_role.setter
    def set_op_role(self, role):
        self._current_role = role

    @property
    def op_role_var(self):
Y
yuyang18 已提交
1558 1559 1560 1561 1562 1563 1564
        """
        The auxiliary variables for :code:`op_role` property.

        See Also: :code:`Program.op_role`'s documentation for details.

        Notes: This is a very low-level API. Users should not use it directly.
        """
Y
yuyang18 已提交
1565 1566 1567 1568
        return self._op_role_var

    @op_role_var.setter
    def set_op_role_var(self, var_name):
Y
yuyang18 已提交
1569
        self._op_role_var = [var_name]
Y
yuyang18 已提交
1570 1571

    @contextlib.contextmanager
W
Wu Yi 已提交
1572
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
1573 1574 1575 1576 1577 1578 1579
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
1580
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
1581 1582 1583 1584

        Examples:

            >>> p, g = backward(...)
W
Wu Yi 已提交
1585
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
1586 1587
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
1588 1589 1590
        tmp_role = self._current_role
        tmp_var = self._op_role_var

Y
yuyang18 已提交
1591 1592
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
1593 1594 1595 1596
        self._op_role_var = [
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
1597
        yield
X
Xin Pan 已提交
1598 1599
        self._op_role_var = tmp_var
        self._current_role = tmp_role
Y
Yu Yang 已提交
1600

1601
    @contextlib.contextmanager
X
Xin Pan 已提交
1602
    def _lr_schedule_guard(self, is_with_opt=False):
1603 1604 1605 1606 1607 1608 1609
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
1610 1611 1612 1613
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
1614 1615 1616 1617 1618 1619 1620

        Examples:

            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
1621 1622 1623 1624

        tmp_role = self._current_role
        tmp_var = self._op_role_var

1625 1626
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
1627 1628
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
1629 1630 1631
        # TODO(typhoonzero): how to set target learning rate var
        self._op_role_var = []
        yield
1632 1633
        self._op_role_var = tmp_var
        self._current_role = tmp_role
1634

1635
    def __str__(self):
Y
yuyang18 已提交
1636 1637 1638 1639 1640 1641 1642 1643 1644
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
1645 1646
        return self.to_string(True)

F
fengjiayi 已提交
1647 1648 1649
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
1650

F
fengjiayi 已提交
1651
        Args:
Y
yuyang18 已提交
1652 1653
            throw_on_error(bool): raise Value error when any of required fields
                is not set.
F
fengjiayi 已提交
1654

Y
yuyang18 已提交
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
            with_details(bool): True if more details about variables and
                parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
                to print.

        Returns
            (str): The debug string.

        Raises:
            ValueError: If any of required fields is not set and throw_on_error is
                True.
F
fengjiayi 已提交
1665 1666 1667 1668 1669 1670 1671 1672 1673 1674

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
1675 1676
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1677 1678
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1679

W
Wu Yi 已提交
1680
    def _get_desc(self):
Y
yuyang18 已提交
1681 1682 1683 1684 1685 1686 1687
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
1688 1689
        return self.desc

X
version  
Xin Pan 已提交
1690 1691 1692
    def _version(self):
        return self.desc._version()

1693
    def clone(self, for_test=False):
Y
yuyang18 已提交
1694 1695 1696
        """
        Create a new, duplicated program.

1697

Y
yuyang18 已提交
1698 1699 1700 1701
        Some operators, e.g., :code:`batch_norm`, behave differently between
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
1702

Y
yuyang18 已提交
1703 1704 1705 1706
        * Set for_test to False when we want to clone the program for training.
        * Set for_test to True when we want to clone the program for testing.

        Notes: This API DOES NOT prune any operator. Use
L
Luo Tao 已提交
1707 1708 1709 1710 1711
        :code:`clone(for_test=True)` before backward and optimization please. e.g.

            >>> test_program = fluid.default_main_program().clone(for_test=True)
            >>> optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            >>> optimizer.minimize()
1712 1713

        Args:
Y
yuyang18 已提交
1714 1715
            for_test(bool): True if change the :code:`is_test` attribute of
                operators to :code:`True`.
1716

D
dzhwinter 已提交
1717
        Returns:
Y
yuyang18 已提交
1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770
            Program: The new, duplicated Program object.

        Examples:

            1. To clone a test program, the sample code is:

            >>> import paddle.fluid as fluid
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>
            >>> test_program = train_program.clone(for_test=True)
            >>>
            >>> sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     sgd.minimize(loss)

            2. The :code:`clone` method can be avoid if you create program for
            training and program for testing individually.

            >>> import paddle.fluid as fluid
            >>>
            >>> def network(is_test):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5, is_test=is_test)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>     return loss
            >>>
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> test_program = fluid.Program()
            >>>
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=False)
            >>>         sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>>         sgd.minimize(loss)
            >>>
            >>> # the test startup program is not used.
            >>> with fluid.program_guard(test_program, fluid.Program()):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=True)

            The two code snippets above will generate same programs.
1771 1772
        """
        if for_test:
X
Xin Pan 已提交
1773
            p = self._inference_optimize(prune_read_op=False)
1774
        else:
1775
            p = Program()
G
gongweibao 已提交
1776 1777
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
1778
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
1779 1780 1781
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
1782 1783 1784 1785

            p._current_role = self._current_role
            p._op_role_var = self._op_role_var

W
Wu Yi 已提交
1786
            p._sync_with_cpp()
1787

W
Wu Yi 已提交
1788
        p._copy_param_info_from(self)
W
Wu Yi 已提交
1789
        p._copy_data_info_from(self)
1790
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
1791
        return p
1792

W
Wu Yi 已提交
1793
    def _prune(self, targets):
Y
yuyang18 已提交
1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.

        """
1809 1810 1811 1812 1813 1814
        if not isinstance(targets, list):
            targets = [targets]
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
1815 1816
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
1817
                    # and we need to find the current op that generate this
1818 1819 1820 1821 1822 1823 1824 1825
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

1826
                    t = t.op
1827 1828 1829 1830
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
1831
                else:
1832 1833
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
1834 1835 1836 1837

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, targets_idx)
M
minqiyang 已提交
1838 1839 1840
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
1841
        res._sync_with_cpp()
1842 1843
        return res

X
Xin Pan 已提交
1844
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
1845
        """
F
fengjiayi 已提交
1846 1847 1848 1849 1850
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

1851
        3. change the :code:`is_test`
Y
yuyang18 已提交
1852 1853 1854
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

1855
        Args:
X
Xin Pan 已提交
1856 1857
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
1858

Y
yuyang18 已提交
1859 1860 1861 1862 1863 1864
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
1865
        res = Program()
1866
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
1867 1868 1869 1870

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
1871
        if prune_read_op:
1872 1873 1874 1875 1876 1877 1878 1879 1880
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
1881
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
1882 1883

        # change all `is_test` attributes to True
M
minqiyang 已提交
1884
        for i in six.moves.range(res.desc.num_blocks()):
1885
            block = res.desc.block(i)
M
minqiyang 已提交
1886
            for j in six.moves.range(block.op_size()):
1887 1888
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
1889
                    op._set_attr('is_test', True)
M
minqiyang 已提交
1890 1891 1892
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
1893
        res._sync_with_cpp()
1894 1895
        return res

1896 1897
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
1898 1899 1900 1901 1902 1903 1904
        """
        Deserialize a program desc from protobuf binary string.

        Notes: All information about parameters will be lost after serialization
        and deserialization.

        Args:
1905
            binary_str_type(str): The binary prootbuf string.
Y
yuyang18 已提交
1906 1907 1908 1909

        Returns:
            Program: A deserialized program desc.
        """
1910 1911
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
1912
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
1913
        p._sync_with_cpp()
1914
        return p
Y
Yu Yang 已提交
1915

D
dzhwinter 已提交
1916 1917
    @property
    def random_seed(self):
Y
yuyang18 已提交
1918 1919 1920 1921 1922 1923
        """
        The default random seed for random operators in Program. Zero means get
        the random seed from random device.

        Notes: It must be set before the operators have been added.
        """
D
dzhwinter 已提交
1924 1925
        return self._seed

Q
qiaolongfei 已提交
1926 1927
    @property
    def num_blocks(self):
Y
yuyang18 已提交
1928 1929 1930
        """
        The number of blocks in this program.
        """
Q
qiaolongfei 已提交
1931 1932
        return self.desc.num_blocks()

D
dzhwinter 已提交
1933 1934 1935 1936 1937 1938
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
1939
    def __repr__(self):
1940
        return self.__str__()
1941

Y
Yu Yang 已提交
1942
    def global_block(self):
Y
yuyang18 已提交
1943 1944 1945
        """
        Get the first block of this program.
        """
Y
Yu Yang 已提交
1946 1947
        return self.blocks[0]

Q
Qiao Longfei 已提交
1948
    def block(self, index):
Y
yuyang18 已提交
1949 1950 1951 1952 1953 1954 1955 1956
        """
        Get the :code:`index` block of this program
        Args:
            index(int): The index of block to get

        Returns:
            Block: The :code:`index` block
        """
Q
Qiao Longfei 已提交
1957 1958
        return self.blocks[index]

Y
Yu Yang 已提交
1959
    def current_block(self):
Y
yuyang18 已提交
1960 1961 1962 1963
        """
        Get the current block. The :code:`current` block is the block to append
        operators.
        """
Y
Yu Yang 已提交
1964 1965
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
1966
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
1967 1968 1969 1970 1971 1972 1973 1974 1975 1976
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
1977
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
1978 1979 1980
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
1981 1982 1983 1984
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
1985
    def _rollback(self):
Y
yuyang18 已提交
1986 1987 1988 1989 1990
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
1991 1992
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
1993
    def _sync_with_cpp(self):
Y
yuyang18 已提交
1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
2004 2005 2006
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
2007
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
2008

W
Wu Yi 已提交
2009
    def _copy_param_info_from(self, other):
2010
        """
2011
        Copy the information of parameters from other program.
D
dzhwinter 已提交
2012

Y
yuyang18 已提交
2013 2014 2015
        Notes: This is a very low level API. Users should not invoke it
        directly.

2016 2017 2018 2019 2020 2021 2022
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
2023
            raise TypeError("_copy_param_info_from should be invoked with "
2024 2025 2026
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
2027
            raise ValueError("_copy_param_info_from should be invoked with two "
2028
                             "program, with represent the same topology")
W
Wu Yi 已提交
2029
        self.global_block()._copy_param_info_from(other.global_block())
2030

2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("_copy_dist_param_info_from should be invoked with "
                            "Program")
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
        self._slice_vars_and_attrs = other._slice_vars_and_attrs
        self._endpoints = other._endpoints
        self._distributed_lookup_table = other._distributed_lookup_table

W
Wu Yi 已提交
2050
    def _copy_data_info_from(self, other):
F
fengjiayi 已提交
2051 2052
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
2053

Y
yuyang18 已提交
2054 2055 2056
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
2057 2058 2059 2060 2061 2062 2063
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
2064
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
2065 2066 2067
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
2068
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
2069
                             "program, with represent the same topology")
2070
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
2071 2072 2073
            if var.is_data:
                self.global_block().var(var.name).is_data = True

2074
    def list_vars(self):
Y
yuyang18 已提交
2075 2076 2077 2078 2079 2080
        """
        Get all variables from this Program. A iterable object is returned.

        Returns:
            iterable: The generator will yield every variable in this program.
        """
2081
        for each_block in self.blocks:
2082
            for each_var in list(each_block.vars.values()):
2083 2084
                yield each_var

Y
Yu Yang 已提交
2085

Y
Yu Yang 已提交
2086
class Parameter(Variable):
2087
    """
2088
    Parameter is derived from Variable. A parameter is a persistable
2089
    Variable, and will be updated by optimizers after each iteration.
2090
    The training of a neural network is essentially the updating of
2091 2092
    its parameters.

2093
    Relative to a general Variable, a Parameter has several its own
2094 2095
    member variables:

2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
2108 2109
    """

Y
Yu Yang 已提交
2110 2111 2112 2113 2114 2115 2116 2117 2118 2119
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
2120 2121 2122

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
2123 2124 2125 2126
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

2127 2128
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
2129
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
2130

W
wanghaoshuang 已提交
2131
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
2132

F
fengjiayi 已提交
2133 2134 2135
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
2136 2137 2138
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
2139

F
update  
fengjiayi 已提交
2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
2154
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
2155
            for attr_name in additional_attr:
2156 2157
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
2158 2159
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
2160 2161 2162 2163
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
2164

Y
Yu Yang 已提交
2165
# program is a global instance.
Y
Yu Yang 已提交
2166 2167
_main_program_ = Program()
_startup_program_ = Program()
2168

2169

2170
def default_startup_program():
Y
Yu Yang 已提交
2171
    """
Y
yuyang18 已提交
2172 2173 2174 2175 2176 2177 2178 2179 2180
    Get default/global startup program.

    The layer function in :code:`fluid.layers` will create parameters, readers,
    NCCL handles as global variables. The :code:`startup_program` will
    initialize them by the operators in startup program. The layer function will
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
    program. Users can use :code:`fluid.program_guard` to switch program.
2181

Y
Yu Yang 已提交
2182 2183 2184
    Returns:
        Program: startup program
    """
Y
Yu Yang 已提交
2185
    return _startup_program_
2186

2187

2188
def default_main_program():
Y
Yu Yang 已提交
2189
    """
Y
yuyang18 已提交
2190 2191 2192 2193 2194 2195 2196 2197 2198
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
2199

Y
Yu Yang 已提交
2200 2201 2202
    Returns:
        Program: main program
    """
Y
Yu Yang 已提交
2203
    return _main_program_
Y
Yu Yang 已提交
2204 2205 2206 2207 2208


def switch_main_program(program):
    """
    Switch the main program to a new program.
2209

Y
Yu Yang 已提交
2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
2224
    Switch the startup program to a new program
Y
Yu Yang 已提交
2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


@contextlib.contextmanager
def program_guard(main_program, startup_program=None):
    """
Y
yuyang18 已提交
2240 2241 2242
    Change the global main program and startup program with `with` statement.
    Layer functions in the Python `with` block will append operators and
    variables to the new main programs.
2243

Y
Yu Yang 已提交
2244
    Examples:
Y
yuyang18 已提交
2245 2246 2247 2248 2249 2250 2251 2252 2253 2254

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program, startup_program):
        >>>     data = fluid.layers.data(...)
        >>>     hidden = fluid.layers.fc(...)

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
2255

Y
Yu Yang 已提交
2256
    Examples:
Y
yuyang18 已提交
2257 2258 2259 2260 2261 2262

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> # does not care about startup program. Just pass a temporary value.
        >>> with fluid.program_guard(main_program, fluid.Program()):
        >>>     data = ...
2263

Y
Yu Yang 已提交
2264
    Args:
Y
yuyang18 已提交
2265
        main_program(Program): New main program inside `with` statement.
2266
        startup_program(Program): New startup program inside `with` statement.
Y
Yu Yang 已提交
2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279
            None means do not change startup program.
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
2280 2281


W
Wu Yi 已提交
2282
def _get_var(name, program=None):
X
xuwei06 已提交
2283
    """
Y
yuyang18 已提交
2284
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
2285

X
xuwei06 已提交
2286 2287 2288
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
2289
        If None, default_global_program() will be used.
X
xuwei06 已提交
2290 2291 2292 2293 2294 2295 2296

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
2297
    assert isinstance(program, Program)
X
xuwei06 已提交
2298 2299

    return program.global_block().var(name)
2300 2301 2302 2303 2304 2305 2306 2307 2308


@contextlib.contextmanager
def _imperative_guard(tracer):
    global _imperative_tracer_
    tmp_trace = _imperative_tracer_
    _imperative_tracer_ = tracer
    yield
    _imperative_tracer_ = tmp_trace