test_imperative_optimizer.py 7.6 KB
Newer Older
M
minqiyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import contextlib
import unittest
import numpy as np
M
minqiyang 已提交
18
import six
M
minqiyang 已提交
19

M
minqiyang 已提交
20
import paddle
M
minqiyang 已提交
21 22
import paddle.fluid as fluid
from paddle.fluid import core
M
minqiyang 已提交
23
from paddle.fluid.optimizer import SGDOptimizer
24 25
from paddle.fluid.imperative.nn import Conv2D, Pool2D, FC
from paddle.fluid.imperative.base import to_variable
M
minqiyang 已提交
26
from test_imperative_base import new_program_scope
27 28


X
Xin Pan 已提交
29
class SimpleImgConvPool(fluid.imperative.Layer):
30 31
    def __init__(self,
                 num_channels,
32
                 num_filters,
M
minqiyang 已提交
33
                 filter_size,
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
                 pool_size,
                 pool_stride,
                 pool_padding=0,
                 pool_type='max',
                 global_pooling=False,
                 conv_stride=1,
                 conv_padding=0,
                 conv_dilation=1,
                 conv_groups=1,
                 act=None,
                 use_cudnn=False,
                 param_attr=None,
                 bias_attr=None):
        super(SimpleImgConvPool, self).__init__()

        self._conv2d = Conv2D(
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=filter_size,
            stride=conv_stride,
            padding=conv_padding,
            dilation=conv_dilation,
            groups=conv_groups,
            param_attr=None,
            bias_attr=None,
            use_cudnn=use_cudnn)

        self._pool2d = Pool2D(
            pool_size=pool_size,
            pool_type=pool_type,
            pool_stride=pool_stride,
            pool_padding=pool_padding,
            global_pooling=global_pooling,
            use_cudnn=use_cudnn)
M
minqiyang 已提交
68

69 70 71 72
    def forward(self, inputs):
        x = self._conv2d(inputs)
        x = self._pool2d(x)
        return x
M
minqiyang 已提交
73 74


X
Xin Pan 已提交
75
class MNIST(fluid.imperative.Layer):
76
    def __init__(self, param_attr=None, bias_attr=None):
M
minqiyang 已提交
77
        super(MNIST, self).__init__()
M
minqiyang 已提交
78

79
        self._simple_img_conv_pool_1 = SimpleImgConvPool(
M
minqiyang 已提交
80
            1, 20, 5, 2, 2, act="relu")
81 82

        self._simple_img_conv_pool_2 = SimpleImgConvPool(
M
minqiyang 已提交
83
            20, 50, 5, 2, 2, act="relu")
84

M
minqiyang 已提交
85
        pool_2_shape = 50 * 4 * 4
86 87
        SIZE = 10
        scale = (2.0 / (pool_2_shape**2 * SIZE))**0.5
M
minqiyang 已提交
88
        self._fc = FC(10,
89 90
                      param_attr=fluid.param_attr.ParamAttr(
                          initializer=fluid.initializer.NormalInitializer(
M
minqiyang 已提交
91 92
                              loc=0.0, scale=scale)),
                      act="softmax")
M
minqiyang 已提交
93 94

    def forward(self, inputs):
95 96
        x = self._simple_img_conv_pool_1(inputs)
        x = self._simple_img_conv_pool_2(x)
97
        x = self._fc(x)
M
minqiyang 已提交
98 99 100 101
        return x


class TestImperativeMnist(unittest.TestCase):
M
minqiyang 已提交
102
    def test_mnist_float32(self):
M
minqiyang 已提交
103
        seed = 90
M
minqiyang 已提交
104
        epoch_num = 1
M
minqiyang 已提交
105
        with fluid.imperative.guard():
M
minqiyang 已提交
106 107 108
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed

M
minqiyang 已提交
109
            mnist = MNIST()
M
minqiyang 已提交
110
            sgd = SGDOptimizer(learning_rate=1e-3)
M
minqiyang 已提交
111
            train_reader = paddle.batch(
M
minqiyang 已提交
112
                paddle.dataset.mnist.train(), batch_size=128, drop_last=True)
M
minqiyang 已提交
113

M
minqiyang 已提交
114
            dy_param_init_value = {}
M
minqiyang 已提交
115 116 117 118 119 120 121
            for epoch in range(epoch_num):
                for batch_id, data in enumerate(train_reader()):
                    dy_x_data = np.array(
                        [x[0].reshape(1, 28, 28)
                         for x in data]).astype('float32')
                    y_data = np.array(
                        [x[1] for x in data]).astype('int64').reshape(128, 1)
M
minqiyang 已提交
122

M
minqiyang 已提交
123 124 125
                    img = to_variable(dy_x_data)
                    label = to_variable(y_data)
                    label._stop_gradient = True
M
minqiyang 已提交
126

M
minqiyang 已提交
127 128 129
                    cost = mnist(img)
                    loss = fluid.layers.cross_entropy(cost, label)
                    avg_loss = fluid.layers.mean(loss)
M
minqiyang 已提交
130

M
minqiyang 已提交
131
                    dy_out = avg_loss._numpy()
M
minqiyang 已提交
132

M
minqiyang 已提交
133
                    if epoch == 0 and batch_id == 0:
M
minqiyang 已提交
134
                        for param in mnist.parameters():
M
minqiyang 已提交
135
                            dy_param_init_value[param.name] = param._numpy()
M
minqiyang 已提交
136

M
minqiyang 已提交
137 138 139
                    avg_loss._backward()
                    sgd.minimize(avg_loss)
                    mnist.clear_gradients()
M
minqiyang 已提交
140

M
minqiyang 已提交
141
                    fluid.default_main_program().global_block()._clear_block()
M
minqiyang 已提交
142

M
minqiyang 已提交
143
                    dy_param_value = {}
M
minqiyang 已提交
144
                    for param in mnist.parameters():
M
minqiyang 已提交
145
                        dy_param_value[param.name] = param._numpy()
M
minqiyang 已提交
146

M
minqiyang 已提交
147 148 149
        with new_program_scope():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
M
minqiyang 已提交
150

M
minqiyang 已提交
151 152
            exe = fluid.Executor(fluid.CPUPlace(
            ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
M
minqiyang 已提交
153

M
minqiyang 已提交
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
            mnist = MNIST()
            sgd = SGDOptimizer(learning_rate=1e-3)
            train_reader = paddle.batch(
                paddle.dataset.mnist.train(), batch_size=128, drop_last=True)

            img = fluid.layers.data(
                name='pixel', shape=[1, 28, 28], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            cost = mnist(img)
            loss = fluid.layers.cross_entropy(cost, label)
            avg_loss = fluid.layers.mean(loss)
            sgd.minimize(avg_loss)

            # initialize params and fetch them
            static_param_init_value = {}
            static_param_name_list = []
M
minqiyang 已提交
170
            for param in mnist.parameters():
M
minqiyang 已提交
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
                static_param_name_list.append(param.name)

            out = exe.run(fluid.default_startup_program(),
                          fetch_list=static_param_name_list)

            for i in range(len(static_param_name_list)):
                static_param_init_value[static_param_name_list[i]] = out[i]

            for epoch in range(epoch_num):
                for batch_id, data in enumerate(train_reader()):
                    static_x_data = np.array(
                        [x[0].reshape(1, 28, 28)
                         for x in data]).astype('float32')
                    y_data = np.array(
                        [x[1] for x in data]).astype('int64').reshape([128, 1])

                    fetch_list = [avg_loss.name]
                    fetch_list.extend(static_param_name_list)
                    out = exe.run(
                        fluid.default_main_program(),
                        feed={"pixel": static_x_data,
                              "label": y_data},
                        fetch_list=fetch_list)

                    static_param_value = {}
                    static_out = out[0]
                    for i in range(1, len(out)):
                        static_param_value[static_param_name_list[i - 1]] = out[
                            i]

M
minqiyang 已提交
201 202
        self.assertTrue(np.allclose(dy_x_data.all(), static_x_data.all()))

M
minqiyang 已提交
203
        for key, value in six.iteritems(static_param_init_value):
M
minqiyang 已提交
204
            self.assertTrue(np.allclose(value, dy_param_init_value[key]))
M
minqiyang 已提交
205 206 207 208

        self.assertTrue(np.allclose(static_out, dy_out))

        for key, value in six.iteritems(static_param_value):
M
minqiyang 已提交
209
            self.assertTrue(np.allclose(value, dy_param_value[key], atol=1e-5))
M
minqiyang 已提交
210 211 212 213


if __name__ == '__main__':
    unittest.main()