lamb.py 8.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from .optimizer import Optimizer
from ..fluid import core
from ..fluid import framework
from ..fluid.framework import Variable


class Lamb(Optimizer):
22
    r"""
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
    LAMB (Layer-wise Adaptive Moments optimizer for Batching training) Optimizer.

    LAMB Optimizer is designed to scale up the batch size of training without losing
    accuracy, which supports adaptive element-wise updating and accurate layer-wise
    correction. For more information, please refer to `Large Batch Optimization for
    Deep Learning: Training BERT in 76 minutes <https://arxiv.org/abs/1904.00962>`_ .

    The updating of parameters follows:

    ..  math::

        m_t &= \\beta_1 m_{t - 1}+ (1 - \\beta_1)g_t

        v_t &= \\beta_2 v_{t - 1}  + (1 - \\beta_2)g_t^2

38 39 40 41
        m_t &= \\frac{m_t}{\\beta_1^t}

        v_t &= \\frac{v_t}{\\beta_2^t}

42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
        r_t &= \\frac{m_t}{\\sqrt{v_t}+\\epsilon}

        w_t &= w_{t-1} -\\eta_t \\frac{\\left \| w_{t-1}\\right \|}{\\left \| r_t + \\lambda w_{t-1}\\right \|} (r_t + \\lambda w_{t-1})


    where :math:`m` is the 1st moment, and :math:`v` the 2nd moment, :math:`\\eta` the
    learning rate, :math:`\\lambda` the LAMB weight decay rate.

    Args:
        learning_rate (float|Variable, optional): the learning rate used to update parameters. \
            Can be a float value or a Variable with data type float32. Default 0.001.
        lamb_weight_decay (float, optional): The LAMB weight decay rate. Default 0.01. Remind that weight_decay should be None.
        beta1 (float, optional): The exponential decay rate for the 1st moment estimates.
            Default 0.9.
        beta2 (float, optional): The exponential decay rate for the 2nd moment estimates.
            Default 0.999.
        epsilon (float, optional): A small float value for numerical stability. Default 1e-6.
        parameters (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
64 65 66
            ( :ref:`api_paddle_fluid_clip_ClipGradByGlobalNorm` , :ref:`api_paddle_fluid_clip_ClipGradByNorm` ,
            :ref:`api_paddle_fluid_clip_ClipGradByValue` ). If you want better convergence, it is recommended
            to use :ref:`api_paddle_fluid_clip_ClipGradByGlobalNorm` . Default None, meaning there is no gradient clipping.
67 68 69 70
        name(str|None): For detailed information, please refer to
            :ref:`api_guide_Name` . Usually name is no need to set and None by default.
    Examples:
        .. code-block:: python
C
Chen Long 已提交
71
            
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
            import paddle
            import numpy as np
            inp = paddle.uniform(min=-0.1, max=0.1, shape=[10, 10], dtype='float32')
            linear = paddle.nn.Linear(10, 10)
            out = linear(inp)
            loss = paddle.mean(out)
            beta1 = paddle.to_tensor([0.9], dtype="float32")
            beta2 = paddle.to_tensor([0.85], dtype="float32")
            lamb = paddle.optimizer.Lamb(learning_rate=0.002, parameters=linear.parameters(), lamb_weight_decay=0.01)
            back = out.backward()
            lamb.step()
            lamb.clear_grad()
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"
    _beta1_pow_acc_str = "beta1_pow_acc"
    _beta2_pow_acc_str = "beta2_pow_acc"

    def __init__(self,
                 learning_rate=0.001,
                 lamb_weight_decay=0.01,
                 beta1=0.9,
                 beta2=0.999,
                 epsilon=1e-6,
                 parameters=None,
                 grad_clip=None,
98
                 exclude_from_weight_decay_fn=None,
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
                 name=None):
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
        super(Lamb, self).__init__(
            learning_rate=learning_rate,
            parameters=parameters,
            weight_decay=None,
            grad_clip=grad_clip,
            name=name)
        self.type = "lamb"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon
        self._lamb_weight_decay = lamb_weight_decay
115
        self._exclude_from_weight_decay_fn = exclude_from_weight_decay_fn
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        # Create accumulator tensors for first and second moments
        for p in parameters:
            self._add_accumulator(self._moment1_acc_str, p)
            self._add_accumulator(self._moment2_acc_str, p)
            self._add_accumulator(
                name=self._beta1_pow_acc_str,
                param=p,
                fill_value=0.9 if isinstance(self._beta1, Variable) \
                        else self._beta1,
                shape=[1],
                type=core.VarDesc.VarType.LOD_TENSOR, device='cpu')
            self._add_accumulator(
                name=self._beta2_pow_acc_str,
                param=p,
                fill_value=0.999 if isinstance(self._beta2, Variable) \
                        else self._beta2,
                shape=[1],
                type=core.VarDesc.VarType.LOD_TENSOR, device='cpu')

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
        block.program._use_lamb = True

        moment1 = self._get_accumulator(self._moment1_acc_str,
                                        param_and_grad[0])
        moment2 = self._get_accumulator(self._moment2_acc_str,
                                        param_and_grad[0])
        beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                              param_and_grad[0])
        beta2_pow_acc = self._get_accumulator(self._beta2_pow_acc_str,
                                              param_and_grad[0])

152 153
        if self._exclude_from_weight_decay_fn is not None \
            and self._exclude_from_weight_decay_fn(param_and_grad[0]):
154 155 156
            weight_decay = 0.0
        else:
            weight_decay = self._lamb_weight_decay
157 158 159 160 161 162 163 164 165 166
        lr = self._create_param_lr(param_and_grad)

        if framework.in_dygraph_mode():
            _, _, _, _, _ = core.ops.lamb(
                param_and_grad[0], param_and_grad[1], lr, moment1, moment2,
                beta1_pow_acc, beta2_pow_acc, param_and_grad[0], moment1,
                moment2, beta1_pow_acc, beta2_pow_acc, 'beta1', self._beta1,
                'beta2', self._beta2, 'epsilon', self._epsilon, 'weight_decay',
                weight_decay)
            return None
167 168

        # create the lamb optimize op
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
        inputs = {
            "Param": param_and_grad[0],
            "Grad": param_and_grad[1],
            "LearningRate": lr,
            "Moment1": moment1,
            "Moment2": moment2,
            "Beta1Pow": beta1_pow_acc,
            "Beta2Pow": beta2_pow_acc
        }
        outputs = {
            "ParamOut": param_and_grad[0],
            "Moment1Out": moment1,
            "Moment2Out": moment2,
            "Beta1PowOut": beta1_pow_acc,
            "Beta2PowOut": beta2_pow_acc
        }
        attrs = {
            "beta1": self._beta1,
            "beta2": self._beta2,
            "epsilon": self._epsilon,
            "weight_decay": weight_decay
        }

192 193
        lamb_op = block.append_op(
            type=self.type,
194 195 196
            inputs=inputs,
            outputs=outputs,
            attrs=attrs,
197 198 199
            stop_gradient=True)

        return lamb_op