test_label_semantic_roles.py 6.2 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
import numpy as np
import paddle.v2 as paddle
import paddle.v2.dataset.conll05 as conll05
import paddle.v2.fluid.core as core
import paddle.v2.fluid.framework as framework
import paddle.v2.fluid.layers as layers
from paddle.v2.fluid.executor import Executor, g_scope
from paddle.v2.fluid.optimizer import SGDOptimizer

word_dict, verb_dict, label_dict = conll05.get_dict()
word_dict_len = len(word_dict)
label_dict_len = len(label_dict)
pred_len = len(verb_dict)

mark_dict_len = 2
word_dim = 32
mark_dim = 5
hidden_dim = 512
depth = 8
mix_hidden_lr = 1e-3

IS_SPARSE = True
PASS_NUM = 10
BATCH_SIZE = 20

embedding_name = 'emb'


def load_parameter(file_name, h, w):
    with open(file_name, 'rb') as f:
        f.read(16)  # skip header.
        return np.fromfile(f, dtype=np.float32).reshape(h, w)


def db_lstm():
    # 8 features
    word = layers.data(name='word_data', shape=[1], data_type='int64')
    predicate = layers.data(name='verb_data', shape=[1], data_type='int64')
    ctx_n2 = layers.data(name='ctx_n2_data', shape=[1], data_type='int64')
    ctx_n1 = layers.data(name='ctx_n1_data', shape=[1], data_type='int64')
    ctx_0 = layers.data(name='ctx_0_data', shape=[1], data_type='int64')
    ctx_p1 = layers.data(name='ctx_p1_data', shape=[1], data_type='int64')
    ctx_p2 = layers.data(name='ctx_p2_data', shape=[1], data_type='int64')
    mark = layers.data(name='mark_data', shape=[1], data_type='int64')

    predicate_embedding = layers.embedding(
        input=predicate,
        size=[pred_len, word_dim],
        data_type='float32',
        is_sparse=IS_SPARSE,
        param_attr={'name': 'vemb'})

    mark_embedding = layers.embedding(
        input=mark,
        size=[mark_dict_len, mark_dim],
        data_type='float32',
        is_sparse=IS_SPARSE)

    word_input = [word, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2]
    emb_layers = [
        layers.embedding(
            size=[word_dict_len, word_dim],
            input=x,
            param_attr={'name': embedding_name,
                        'trainable': False}) for x in word_input
    ]
    emb_layers.append(predicate_embedding)
    emb_layers.append(mark_embedding)

    hidden_0_layers = [
        layers.fc(input=emb, size=hidden_dim) for emb in emb_layers
    ]

    hidden_0 = layers.sums(input=hidden_0_layers)

    lstm_0 = layers.dynamic_lstm(
        input=hidden_0,
        size=hidden_dim,
        candidate_activation='relu',
        gate_activation='sigmoid',
        cell_activation='sigmoid')

    # stack L-LSTM and R-LSTM with direct edges
    input_tmp = [hidden_0, lstm_0]

    for i in range(1, depth):
        mix_hidden = layers.sums(input=[
            layers.fc(input=input_tmp[0], size=hidden_dim),
            layers.fc(input=input_tmp[1], size=hidden_dim)
        ])

        lstm = layers.dynamic_lstm(
            input=mix_hidden,
            size=hidden_dim,
            candidate_activation='relu',
            gate_activation='sigmoid',
            cell_activation='sigmoid',
            is_reverse=((i % 2) == 1))

        input_tmp = [mix_hidden, lstm]

    feature_out = layers.sums(input=[
        layers.fc(input=input_tmp[0], size=label_dict_len),
        layers.fc(input=input_tmp[1], size=label_dict_len)
    ])

    return feature_out


def to_lodtensor(data, place):
    seq_lens = [len(seq) for seq in data]
    cur_len = 0
    lod = [cur_len]
    for l in seq_lens:
        cur_len += l
        lod.append(cur_len)
    flattened_data = np.concatenate(data, axis=0).astype("int64")
    flattened_data = flattened_data.reshape([len(flattened_data), 1])
    res = core.LoDTensor()
    res.set(flattened_data, place)
    res.set_lod([lod])
    return res


def main():
    # define network topology
    feature_out = db_lstm()
    target = layers.data(name='target', shape=[1], data_type='int64')
    crf_cost = layers.linear_chain_crf(
        input=feature_out,
        label=target,
        param_attr={"name": 'crfw',
                    "learning_rate": mix_hidden_lr})
    avg_cost = layers.mean(x=crf_cost)
    # TODO(qiao)
    #   1. add crf_decode_layer and evaluator
    #   2. use other optimizer and check why out will be NAN
    sgd_optimizer = SGDOptimizer(learning_rate=0.0001)
    opts = sgd_optimizer.minimize(avg_cost)

    train_data = paddle.batch(
        paddle.reader.shuffle(
            paddle.dataset.conll05.test(), buf_size=8192),
        batch_size=BATCH_SIZE)
    place = core.CPUPlace()
    exe = Executor(place)

    exe.run(framework.default_startup_program())

    embedding_param = g_scope.find_var(embedding_name).get_tensor()
    embedding_param.set(
        load_parameter(conll05.get_embedding(), word_dict_len, word_dim), place)

    batch_id = 0
    for pass_id in xrange(PASS_NUM):
        for data in train_data():
            word_data = to_lodtensor(map(lambda x: x[0], data), place)
            ctx_n2_data = to_lodtensor(map(lambda x: x[1], data), place)
            ctx_n1_data = to_lodtensor(map(lambda x: x[2], data), place)
            ctx_0_data = to_lodtensor(map(lambda x: x[3], data), place)
            ctx_p1_data = to_lodtensor(map(lambda x: x[4], data), place)
            ctx_p2_data = to_lodtensor(map(lambda x: x[5], data), place)
            verb_data = to_lodtensor(map(lambda x: x[6], data), place)
            mark_data = to_lodtensor(map(lambda x: x[7], data), place)
            target = to_lodtensor(map(lambda x: x[8], data), place)

            outs = exe.run(framework.default_main_program(),
                           feed={
                               'word_data': word_data,
                               'ctx_n2_data': ctx_n2_data,
                               'ctx_n1_data': ctx_n1_data,
                               'ctx_0_data': ctx_0_data,
                               'ctx_p1_data': ctx_p1_data,
                               'ctx_p2_data': ctx_p2_data,
                               'verb_data': verb_data,
                               'mark_data': mark_data,
                               'target': target
                           },
                           fetch_list=[avg_cost])
            avg_cost_val = np.array(outs[0])

            if batch_id % 10 == 0:
                print("avg_cost=" + str(avg_cost_val))

            # exit early for CI
            exit(0)

            batch_id = batch_id + 1


if __name__ == '__main__':
    main()