test_newprofiler.py 13.3 KB
Newer Older
C
chenjian 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np
19
import tempfile
20
import os
C
chenjian 已提交
21 22
import paddle
import paddle.profiler as profiler
23
import paddle.profiler.utils as utils
Z
Zhang Ting 已提交
24 25 26
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.io import Dataset, DataLoader
C
chenjian 已提交
27 28 29


class TestProfiler(unittest.TestCase):
30 31 32
    def tearDown(self):
        self.temp_dir.cleanup()

C
chenjian 已提交
33 34
    def test_profiler(self):
        def my_trace_back(prof):
35 36 37 38 39
            path = os.path.join(self.temp_dir.name,
                                './test_profiler_chrometracing')
            profiler.export_chrome_tracing(path)(prof)
            path = os.path.join(self.temp_dir.name, './test_profiler_pb')
            profiler.export_protobuf(path)(prof)
C
chenjian 已提交
40

41
        self.temp_dir = tempfile.TemporaryDirectory()
C
chenjian 已提交
42 43 44 45 46 47 48 49
        x_value = np.random.randn(2, 3, 3)
        x = paddle.to_tensor(
            x_value, stop_gradient=False, place=paddle.CPUPlace())
        y = x / 2.0
        ones_like_y = paddle.ones_like(y)
        with profiler.Profiler(targets=[profiler.ProfilerTarget.CPU], ) as prof:
            y = x / 2.0
        prof = None
50 51 52 53
        self.assertEqual(utils._is_profiler_used, False)
        with profiler.RecordEvent(name='test'):
            y = x / 2.0

C
chenjian 已提交
54 55 56
        with profiler.Profiler(
                targets=[profiler.ProfilerTarget.CPU],
                scheduler=(1, 2)) as prof:
57
            self.assertEqual(utils._is_profiler_used, True)
C
chenjian 已提交
58 59
            with profiler.RecordEvent(name='test'):
                y = x / 2.0
60

C
chenjian 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
        prof = None
        with profiler.Profiler(
                targets=[profiler.ProfilerTarget.CPU],
                scheduler=profiler.make_scheduler(
                    closed=0, ready=1, record=1, repeat=1),
                on_trace_ready=my_trace_back) as prof:
            y = x / 2.0
        prof = None
        with profiler.Profiler(
                targets=[profiler.ProfilerTarget.CPU],
                scheduler=profiler.make_scheduler(
                    closed=0, ready=0, record=2, repeat=1),
                on_trace_ready=my_trace_back) as prof:
            for i in range(3):
                y = x / 2.0
                prof.step()
        prof = None
        with profiler.Profiler(
                targets=[profiler.ProfilerTarget.CPU],
                scheduler=lambda x: profiler.ProfilerState.RECORD_AND_RETURN,
                on_trace_ready=my_trace_back) as prof:
            for i in range(2):
                y = x / 2.0
                prof.step()

        def my_sheduler(num_step):
            if num_step % 5 < 2:
                return profiler.ProfilerState.RECORD_AND_RETURN
            elif num_step % 5 < 3:
                return profiler.ProfilerState.READY
            elif num_step % 5 < 4:
                return profiler.ProfilerState.RECORD
            else:
                return profiler.ProfilerState.CLOSED

        def my_sheduler1(num_step):
            if num_step % 5 < 2:
                return profiler.ProfilerState.RECORD
            elif num_step % 5 < 3:
                return profiler.ProfilerState.READY
            elif num_step % 5 < 4:
                return profiler.ProfilerState.RECORD
            else:
                return profiler.ProfilerState.CLOSED

        prof = None
        with profiler.Profiler(
                targets=[profiler.ProfilerTarget.CPU],
                scheduler=lambda x: profiler.ProfilerState.RECORD_AND_RETURN,
                on_trace_ready=my_trace_back) as prof:
            for i in range(2):
                y = x / 2.0
                prof.step()
        prof = None
        with profiler.Profiler(
                targets=[profiler.ProfilerTarget.CPU],
                scheduler=my_sheduler,
                on_trace_ready=my_trace_back) as prof:
            for i in range(5):
                y = x / 2.0
                prof.step()
        prof = None
        with profiler.Profiler(
                targets=[profiler.ProfilerTarget.CPU],
                scheduler=my_sheduler1) as prof:
            for i in range(5):
                y = x / 2.0
                prof.step()
        prof = None
        with profiler.Profiler(
                targets=[profiler.ProfilerTarget.CPU],
                scheduler=profiler.make_scheduler(
                    closed=1, ready=1, record=2, repeat=1, skip_first=1),
                on_trace_ready=my_trace_back) as prof:
            for i in range(5):
                y = x / 2.0
                paddle.grad(outputs=y, inputs=[x], grad_outputs=ones_like_y)
                prof.step()
139 140
        path = os.path.join(self.temp_dir.name, './test_profiler_pb.pb')
        prof.export(path=path, format='pb')
C
chenjian 已提交
141
        prof.summary()
142
        result = profiler.utils.load_profiler_result(path)
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
        prof = None
        dataset = RandomDataset(10 * 4)
        simple_net = SimpleNet()
        opt = paddle.optimizer.SGD(learning_rate=1e-3,
                                   parameters=simple_net.parameters())
        loader = DataLoader(
            dataset, batch_size=4, shuffle=True, drop_last=True, num_workers=2)
        prof = profiler.Profiler(on_trace_ready=lambda prof: None)
        prof.start()
        for i, (image, label) in enumerate(loader()):
            out = simple_net(image)
            loss = F.cross_entropy(out, label)
            avg_loss = paddle.mean(loss)
            avg_loss.backward()
            opt.minimize(avg_loss)
            simple_net.clear_gradients()
            prof.step()
        prof.stop()
        prof.summary()
        prof = None
        dataset = RandomDataset(10 * 4)
        simple_net = SimpleNet()
        loader = DataLoader(dataset, batch_size=4, shuffle=True, drop_last=True)
        opt = paddle.optimizer.Adam(
            learning_rate=1e-3, parameters=simple_net.parameters())
        prof = profiler.Profiler(on_trace_ready=lambda prof: None)
        prof.start()
        for i, (image, label) in enumerate(loader()):
            out = simple_net(image)
            loss = F.cross_entropy(out, label)
            avg_loss = paddle.mean(loss)
            avg_loss.backward()
            opt.step()
            simple_net.clear_gradients()
            prof.step()
        prof.stop()
C
chenjian 已提交
179 180


181 182 183 184 185 186 187 188 189 190
class TestNvprof(unittest.TestCase):
    def test_nvprof(self):
        for i in range(10):
            paddle.fluid.profiler._nvprof_range(i, 10, 20)
            x_value = np.random.randn(2, 3, 3)
            x = paddle.to_tensor(
                x_value, stop_gradient=False, place=paddle.CPUPlace())
            y = x / 2.0


191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
class TestGetProfiler(unittest.TestCase):
    def test_getprofiler(self):
        config_content = '''
        {
        "targets": ["CPU"],
        "scheduler": [3,4],
        "on_trace_ready": {
            "export_chrome_tracing":{
                "module": "paddle.profiler",
                "use_direct": false,
                "args": [],
                "kwargs": {
                        "dir_name": "testdebug/"
                    }
                }
            },
          "timer_only": false
        }
        '''
        filehandle = tempfile.NamedTemporaryFile(mode='w')
        filehandle.write(config_content)
        filehandle.flush()
        import paddle.profiler.profiler as profiler
        profiler = profiler.get_profiler(filehandle.name)
        x_value = np.random.randn(2, 3, 3)
        x = paddle.to_tensor(
            x_value, stop_gradient=False, place=paddle.CPUPlace())
        with profiler:
            for i in range(5):
                y = x / 2.0
                ones_like_y = paddle.ones_like(y)
                profiler.step()

        # below tests are just for coverage, wrong config
        # test use_direct
        config_content = '''
        {
        "targets": ["Cpu", "Gpu"],
        "scheduler": {
            "make_scheduler":{
                "module": "paddle.profiler",
                "use_direct": true,
                "args": [],
                "kwargs": {}
            }
        },
        "on_trace_ready": {
            "export_chrome_tracing":{
                "module": "paddle.profiler1",
                "use_direct": true,
                "args": [],
                "kwargs": {
                    }
                }
            },
          "timer_only": false
        }
        '''
        filehandle = tempfile.NamedTemporaryFile(mode='w')
        filehandle.write(config_content)
        filehandle.flush()
        import paddle.profiler.profiler as profiler
        try:
            profiler = profiler.get_profiler(filehandle.name)
        except:
            pass

        # test scheduler 
        config_content = '''
        {
        "targets": ["Cpu", "Gpu"],
        "scheduler": {
           "make_scheduler":{
                "module": "paddle.profiler",
                "use_direct": false,
                "args": [],
                "kwargs": {
                        "closed": 1,
                        "ready": 1,
                        "record": 2
                    }
            }
        },
        "on_trace_ready": {
            "export_chrome_tracing":{
                "module": "paddle.profiler",
                "use_direct": true,
                "args": [],
                "kwargs": {
                    }
                }
            },
          "timer_only": false
        }
        '''
        filehandle = tempfile.NamedTemporaryFile(mode='w')
        filehandle.write(config_content)
        filehandle.flush()
        import paddle.profiler.profiler as profiler
        profiler = profiler.get_profiler(filehandle.name)

        # test exception
        config_content = '''
        {
        "targets": [1],
        "scheduler": {
            "make_scheduler1":{
                "module": "paddle.profiler",
                "use_direct": false,
                "args": [],
                "kwargs": {
                        "closed": 1,
                        "ready": 1,
                        "record": 2
                    }
            }
        },
        "on_trace_ready": {
            "export_chrome_tracing1":{
                "module": "paddle.profiler",
                "use_direct": false,
                "args": [],
                "kwargs": {
                        "dir_name": "testdebug/"
                    }
                }
            },
          "timer_only": 1
        }
        '''
        filehandle = tempfile.NamedTemporaryFile(mode='w')
        filehandle.write(config_content)
        filehandle.flush()
        import paddle.profiler.profiler as profiler
        profiler = profiler.get_profiler(filehandle.name)
        # test path error
        import paddle.profiler.profiler as profiler
        profiler = profiler.get_profiler('nopath.json')


Z
Zhang Ting 已提交
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
class RandomDataset(Dataset):
    def __init__(self, num_samples):
        self.num_samples = num_samples

    def __getitem__(self, idx):
        image = np.random.random([100]).astype('float32')
        label = np.random.randint(0, 10 - 1, (1, )).astype('int64')
        return image, label

    def __len__(self):
        return self.num_samples


class SimpleNet(nn.Layer):
    def __init__(self):
        super(SimpleNet, self).__init__()
        self.fc = nn.Linear(100, 10)

    def forward(self, image, label=None):
        return self.fc(image)


class TestTimerOnly(unittest.TestCase):
    def test_with_dataloader(self):
        def train(step_num_samples=None):
            dataset = RandomDataset(20 * 4)
            simple_net = SimpleNet()
            opt = paddle.optimizer.SGD(learning_rate=1e-3,
                                       parameters=simple_net.parameters())
            loader = DataLoader(
                dataset,
                batch_size=4,
                shuffle=True,
                drop_last=True,
                num_workers=2)
            step_info = ''
            p = profiler.Profiler(timer_only=True)
            p.start()
            for i, (image, label) in enumerate(loader()):
                out = simple_net(image)
                loss = F.cross_entropy(out, label)
                avg_loss = paddle.mean(loss)
                avg_loss.backward()
                opt.minimize(avg_loss)
                simple_net.clear_gradients()
                p.step(num_samples=step_num_samples)
                if i % 10 == 0:
                    step_info = p.step_info()
                    print("Iter {}: {}".format(i, step_info))
            p.stop()
            return step_info

        step_info = train(step_num_samples=None)
        self.assertTrue('steps/s' in step_info)
        step_info = train(step_num_samples=4)
        self.assertTrue('samples/s' in step_info)

    def test_without_dataloader(self):
        x = paddle.to_tensor(np.random.randn(10, 10))
        y = paddle.to_tensor(np.random.randn(10, 10))
        p = profiler.Profiler(timer_only=True)
        p.start()
        step_info = ''
        for i in range(20):
            out = x + y
            p.step()
        p.stop()


C
chenjian 已提交
400 401
if __name__ == '__main__':
    unittest.main()