datamover_primitives_xpu2.h 22.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
#include "xpu/kernel/cluster_header.h"
#include "xpu/kernel/debug.h"
#include "xpu/kernel/math.h"

20
namespace phi {
21
namespace kps {
22 23 24 25 26 27 28 29 30 31 32 33
namespace details {

template <typename T, int VecSize>
struct alignas(sizeof(T) * VecSize) VectorType {
  T val[VecSize];
};

/**
 * Configuration of broadcast. Calculate the input data index according to the
 * index of the output data. if input or output shape is [dim0, dim1] then dims
 * must be [dim1, dim0].
 */
34
#pragma pack(4)
35 36
template <int kDims>
struct BroadcastConfig {
37 38 39
  int strides_in[phi::DDim::kMaxRank];
  int strides_out[phi::DDim::kMaxRank];
  int in_dim[phi::DDim::kMaxRank];
40 41 42 43 44 45

  HOSTDEVICE BroadcastConfig() {}

  HOSTDEVICE BroadcastConfig(const std::vector<int64_t>& out_dims,
                             const std::vector<int64_t>& in_dims,
                             int dim_size) {
46 47 48 49 50 51 52 53 54
    std::vector<int> strides_in_tmp;
    std::vector<int> strides_out_tmp;
    std::vector<int> dim_tmp;
    strides_in_tmp.resize(dim_size, 1);
    strides_out_tmp.resize(dim_size, 1);
    dim_tmp.resize(dim_size, 1);
    for (int i = 1; i < dim_size; i++) {
      strides_in_tmp[i] = strides_in_tmp[i - 1] * in_dims[i - 1];
      strides_out_tmp[i] = strides_out_tmp[i - 1] * out_dims[i - 1];
55 56
    }

57 58
    for (int i = 0; i < dim_size; i++) {
      dim_tmp[i] = in_dims[i];
59 60
    }

61 62 63 64 65 66 67 68 69 70 71 72 73 74
    memcpy(strides_in, strides_in_tmp.data(), kDims * sizeof(int));
    memcpy(strides_out, strides_out_tmp.data(), kDims * sizeof(int));
    memcpy(in_dim, dim_tmp.data(), kDims * sizeof(int));
  }

  __device__ inline int operator()(int index_output) const {
    int index_src = 0;
#pragma unroll
    for (int i = kDims - 1; i >= 0; --i) {
      int tmp_index = (index_output / strides_out[i]);
      index_output = index_output - tmp_index * strides_out[i];
      index_src += (tmp_index % in_dim[i]) * strides_in[i];
    }
    return index_src;
75 76
  }
};
77
#pragma pack()
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106

}  // namespace details

/**
 * @brief Read 2D data from global memory to register according to Tx type, and
 * store it as Ty type into register.
 *
 * @template paraments
 * Tx: The type of data stored in the global memory.
 * Ty: The type of data that needs to be stored in registers.
 * NX: The number of data columns loaded by each thread.
 * NY: The number of data rows loaded by each thread.
 * BlockSize: Identifies the current device thread index method. For xpu,
 * core_id() is used as the index.
 * IsBoundary: Indicates whether to perform block access storage out-of-bounds
 * judgment. When the number of data processed by the block is less than
 * NX x NY x core_num(), boundary judgment is required to avoid memory access
 * crossing the boundary.
 *
 * @param:
 * dst: The register pointer of the thread, the size is NX * NY.
 * src: The data pointer of the current block.
 * size_nx: The maximum offset of the current block is size_nx elements in the
 * lowest dimension. The parameters are only calculated when isboundary = true.
 * size_ny: The maximum offset of the current block is size_ny elements in the
 * first dimension. The parameters are only calculated when isboundary = true.
 * stride_nx: Each read one element stride stride_nx elements in the last dim.
 * stride_ny: Each read one element stride stride_ny elements in the first dim.
 */
107 108 109 110 111
template <typename Tx,
          typename Ty,
          int NX,
          int NY,
          int BlockSize,
112
          bool IsBoundary = false>
113 114 115 116 117
__device__ __inline__ void ReadData(Ty* dst,
                                    const Tx _global_ptr_* src,
                                    int size_nx,
                                    int size_ny,
                                    int stride_nx,
118
                                    int stride_ny) {
119 120
  int thread_offset = core_id();
  int left_size_nx = size_nx - thread_offset;
121
  __local__ Tx in_temp[1];
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
  // Each branch is added for better performance
  if (NX == 1 && NY == 1) {  // for NX == 1 and NY == 1
    if (IsBoundary) {
      if (left_size_nx > 0) {
        GM2LM(src + thread_offset, in_temp, sizeof(Tx));
        dst[0] = static_cast<Ty>(in_temp[0]);
      }
    } else {
      GM2LM(src + thread_offset, in_temp, sizeof(Tx));
      dst[0] = static_cast<Ty>(in_temp[0]);
    }
  } else if (NX == 1) {  // for NX == 1 and NY != 1
#pragma unroll
    for (int idy = 0; idy < NY; ++idy) {
      if (IsBoundary) {
        if (idy * stride_ny >= size_ny) {
          break;
        }
      }
      GM2LM(src + thread_offset + idy * stride_ny, in_temp, sizeof(Tx));
      dst[idy] = static_cast<Ty>(in_temp[0]);
    }
  } else if (NY == 1) {  // for NY == 1 and NX != 1
#pragma unroll
    for (int idx = 0; idx < NX; ++idx) {
      if (IsBoundary) {
        if (idx * stride_nx >= left_size_nx) {
          break;
        }
      }
      GM2LM(src + thread_offset + idx * stride_nx, in_temp, sizeof(Tx));
      dst[idx] = static_cast<Ty>(in_temp[0]);
    }
  } else {  // for NX != 1 and NY != 1
#pragma unroll
    for (int idx = 0; idx < NX; ++idx) {
#pragma unroll
      for (int idy = 0; idy < NY; ++idy) {
        if (IsBoundary) {
          if (idy * stride_ny >= size_ny || idx * stride_nx >= left_size_nx) {
            break;
          }
        }
        int fix = thread_offset + idx * stride_nx + idy * stride_ny;
        GM2LM(src + fix, in_temp, sizeof(Tx));
        dst[idy * NX + idx] = static_cast<Ty>(in_temp[0]);
      }
    }
  }
}

/**
 * @brief Initialize register with init_data.
 *
 * @template paraments
 * T: Data type of register.
 * NX: Number of data to initialize.
 *
 * @param:
 * dst: The register pointer of the thread, the size is NX.
 * init_data: Initial value.
 */
template <typename T, int NX>
185
__device__ __inline__ void Init(T* dst, T init_data) {
186 187 188 189 190 191
#pragma unroll
  for (int i = 0; i < NX; i++) {
    dst[i] = init_data;
  }
}

192 193 194 195 196 197 198 199 200 201 202 203
/**
 * The difference from the above function is that
 * it supports different data types of inputs.
 */
template <typename T, typename ArgsT, int Index, int NX>
__device__ __forceinline__ void Init(ArgsT* dst, T init_data) {
#pragma unroll
  for (int i = 0; i < NX; i++) {
    std::get<Index>(dst[i]) = init_data;
  }
}

204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
/**
 * @brief Read 1D data from global memory to register. When IsBoundary = true
 * and (NX % 4 == 0 or Nx % 2 == 0), vectorized load data will be used to
 * improve memory access efficiency.
 *
 * @template paraments
 * T: The type of data.
 * NX: Each thread load NX data from global memory continuously.
 * NY: Each thread need to load NY rows, only NY = 1 was supported.
 * BlockSize: Identifies the current device thread index method. For xpu,
 * core_id() is used as the index.
 * IsBoundary: Whether to make an out-of-bounds judgment on access to memory.
 * When the number of data processed by this block is less than
 * NX x NY x core_num(), boundary judgment is required to avoid memory access
 * crossing the boundary.
 *
 * @param:
 * dst: The register pointer of the thread, the size is NX * NY.
 * src: The data pointer of the current block.
 * size: The current block needs to load size data continuously.
 */
225
template <typename T, int NX, int NY, int BlockSize, bool IsBoundary>
226 227
__device__ __inline__ void ReadData(T* dst,
                                    const T _global_ptr_* src,
228
                                    int num) {
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
  int thread_offset = core_id() * NX;
  __local__ T in_temp[1];
  if (IsBoundary) {  // core_num() * NX > num
#pragma unroll
    for (int idx = 0; idx < NX; ++idx) {
      if (idx + thread_offset < num) {
        GM2LM(src + thread_offset + idx, in_temp, sizeof(T));
        dst[idx] = in_temp[0];
      }
    }
  } else {  // core_num() * NX < num
    GM2LM(src + thread_offset, dst, NX * sizeof(T));
  }
}

244 245 246 247 248 249 250 251 252 253
/**
 * @brief Read 1D data from global memory to register. The difference
 * from the above function is that it supports different data types of inputs.
 */
template <typename T,
          int NX,
          int NY,
          int BlockSize,
          typename ArgsT,
          int Index,
254
          bool IsBoundary>
255
__device__ __forceinline__ void ReadData(ArgsT* dst,
256
                                         const T _global_ptr_* src,
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
                                         int num) {
  int thread_offset = core_id() * NX;
  __local__ T in_temp[1];
  __local__ T in_vec[NX];
  if (IsBoundary) {  // core_num() * NX > num
#pragma unroll
    for (int idx = 0; idx < NX; ++idx) {
      if (idx + thread_offset < num) {
        GM2LM(src + thread_offset + idx, in_temp, sizeof(T));
        std::get<Index>(dst[idx]) = in_temp[0];
      }
    }
  } else {  // core_num() * NX < num
    GM2LM(src + thread_offset, in_vec, NX * sizeof(T));
#pragma unroll
    for (int idx = 0; idx < NX; ++idx) {
      std::get<Index>(dst[idx]) = in_vec[idx];
    }
  }
}

278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
/**
 * @brief Read 2D data from global memory to registers with broadcast form.
 *
 * @template paraments
 * T: The type of data stored in the global memory.
 * NX: The number of data columns loaded by each thread.
 * NY: The number of data rows loaded by each thread.
 * BlockSize: Identifies the current device thread index method. For xpu,
 * core_id() is used as the index.
 * Rank: The shape size of out. eg in[1, 35], out[32, 35] then shape size is 2.
 * IsBoundary: Indicates whether to perform block access storage out-of-bounds
 * judgment. When the number of data processed by the block is less than
 * NX x NY x core_num(), boundary judgment is required to avoid memory access
 * crossing the boundary.
 *
 * @param:
 * dst: The register pointer of the thread, the size is NX * NY.
 * src: Raw input data pointer of kernel.
 * block_offset: Data offset of this block, core_num() *  cluster_id() * NX;
 * config: Calculation configuration of broadcast. It is used to calculate the
 * coordinate mapping relationship between output data and input data.
 * total_num_output: Total number of original output.
 * stride_nx: Each read one element stride stride_nx elements in the last dim.
 * stride_ny: Each read one element stride stride_ny elements in the first dim.
 */
303 304 305 306 307
template <typename T,
          int NX,
          int NY,
          int BlockSize,
          int Rank,
308
          bool IsBoundary = false>
309 310
__device__ __inline__ void ReadDataBc(T* dst,
                                      const T _global_ptr_* src,
311 312
                                      uint32_t block_offset,
                                      details::BroadcastConfig<Rank> config,
313 314
                                      int total_num_output,
                                      int stride_nx,
315
                                      int stride_ny) {
316 317 318 319 320 321 322 323 324 325 326
  uint32_t thread_offset = block_offset + core_id();
  uint32_t index_src = 0;
  __local__ T in_temp[1];

#pragma unroll
  for (int ny = 0; ny < NY; ++ny) {
#pragma unroll
    for (uint32_t nx = 0; nx < NX; ++nx) {
      uint32_t index_output = thread_offset + ny * stride_ny + nx * stride_nx;
      index_src = 0;
      if (IsBoundary) {
327
        if (index_output >= (uint32_t)total_num_output) {
328 329 330
          break;
        }
      }
331
      index_src = config(index_output);
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
      GM2LM(src + index_src, in_temp, sizeof(T));
      dst[nx + ny * NX] = in_temp[0];
    }
  }
}

/**
 * @brief Read 2D data from global memory to register with reduce form.
 *
 * @template paraments
 * T: The type of data.
 * NX: The number of data columns loaded by each thread.
 * NY: The number of data rows loaded by each thread.
 * BlockSize: Identifies the current device thread index method. For xpu,
 * core_id() is used as the index.
 * Rank: The shape size of out. eg in[1, 35], out[32, 35] then shape size is 2.
 * IsBoundary: Indicates whether to perform block access storage out-of-bounds
 * judgment. When the number of data processed by the block is less than
 * NX x NY x core_num(), boundary judgment is required to avoid memory access
 * crossing the boundary.
 *
 * @param:
 * dst: The register pointer of the thread, the size is NX * NY.
 * src: The input data pointer of this block.
 * block_offset: The data offset of this block, blockDim.x * cluster_id() * NX.
 * index_cal: Calculation configuration of Reduce. It is used to calculate the
 * coordinate mapping relationship between output data and input data.
 * size_nx: The current block needs to load size_nx columns of data, this
 * parameter will participate in the calculation when isboundary = true.
 * size_ny: The current block needs to load size_ny rows of data, this parameter
 * will participate in the calculation when isboundary = true.
 * will be used when IsBoundary = true.
 * stride_nx: Each read one element stride stride_nx columns.
 * stride_ny: Each read one element stride stride_ny raws.
 * reduce_last_dim: Used to indicate whether the dimension of reduce contains
 * the lowest dimension.
 */
369 370
template <typename Tx,
          typename Ty,
371 372 373 374 375
          int NX,
          int NY,
          int BlockSize,
          int Rank,
          typename IndexCal,
376
          typename Functor,
377
          bool IsBoundary = false>
378 379 380 381 382 383 384 385 386 387
__device__ __forceinline__ void ReadDataReduce(Ty* dst,
                                               const Tx* __restrict__ src,
                                               int block_offset,
                                               const IndexCal& index_cal,
                                               int size_nx,
                                               int size_ny,
                                               int stride_nx,
                                               int stride_ny,
                                               Functor func,
                                               bool reduce_last_dim) {
388
  __local__ Tx in_temp[1];
389
  int thread_offset = 0;
390
  int left_idx = 0;
391
  if (reduce_last_dim) {
392 393
    thread_offset = core_id();
    left_idx = 0;
394
  } else {
395 396
    thread_offset = 0;
    left_idx = 0;
397 398 399 400 401 402
  }

  if (NX == 1) {
#pragma unroll
    for (int ny = 0; ny < NY; ++ny) {
      if (IsBoundary) {
403
        if (thread_offset >= size_ny) {
404 405 406
          break;
        }
      }
407 408 409
      uint32_t index_src = index_cal(thread_offset + block_offset);
      GM2LM(src + index_src, in_temp, sizeof(Tx));
      dst[ny] = static_cast<Ty>(func(in_temp[0]));
410 411 412 413 414 415 416 417
      thread_offset += stride_ny;
    }
  } else {
#pragma unroll
    for (int nx = 0; nx < NX; ++nx) {
#pragma unroll
      for (int ny = 0; ny < NY; ++ny) {
        if (IsBoundary) {
418 419
          if ((thread_offset >= size_ny) ||
              (left_idx + nx * stride_nx >= size_nx)) {
420 421 422
            break;
          }
        }
423 424 425
        uint32_t index_src = index_cal(thread_offset + block_offset);
        GM2LM(src + index_src, in_temp, sizeof(Tx));
        dst[nx + ny * NX] = static_cast<Ty>(func(in_temp[0]));
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
        thread_offset += stride_ny;
      }
    }
  }
}
/**
 * @brief Write 1D data from registers to global memory. When IsBoundary = true
 * and (NX % 4 == 0 or Nx % 2 == 0), the data will be vectorized to improve the
 * data loading efficiency
 *
 * @template paraments
 * T: The type of data.
 * NX: The number of data continuously writed by each thread.
 * NY: The number of data rows loaded by each thread, only NY = 1 was supported.
 * BlockSize: Identifies the current device thread index method. For xpu,
 * core_id() is used as the index.
 * IsBoundary: Indicates whether to perform block access storage out-of-bounds
 * judgment. When the number of data processed by the block is less than
 * NX x NY x core_num(), boundary judgment is required to avoid memory access
 * crossing the boundary.
 *
 * @param:
 * dst: The data pointer of the current block.
 * src: The register pointer, the size is NX * NY.
 * size: The current block needs to load size elements continuously.
 */

template <typename T, int NX, int NY, int BlockSize, bool IsBoundary>
__device__ void WriteData(T _global_ptr_* dst, const T* src, int num) {
  int thread_offset = core_id() * NX;
  __local__ T in_temp[1];
  if (IsBoundary) {  // core_num() * NX > num
#pragma unroll
    for (int idx = 0; idx < NX; ++idx) {
      if (idx + thread_offset < num) {
        in_temp[0] = src[idx];
        LM2GM(in_temp, dst + idx + thread_offset, sizeof(T));
      }
    }
  } else {  // core_num() * NX < num
    LM2GM(src, dst + thread_offset, NX * sizeof(T));
  }
}

/**
 * @brief Write 2D data from register to global memory according to Tx type, and
 * store it as Ty type.
 *
 * @template paraments
 * Tx: The type of data that needs to be stored in registers.
 * Ty: The type of data stored in the global memory.
 * NX: The number of data columns loaded by each thread.
 * NY: The number of data rows loaded by each thread.
 * BlockSize: Identifies the current device thread index method. For xpu,
 * core_id() is used as the index.
 * IsBoundary: Indicates whether to perform block access storage out-of-bounds
 * judgment. When the number of data processed by the block is less than
 * NX x NY x core_num(), boundary judgment is required to avoid memory access
 * crossing the boundary.
 *
 * @param:
 * dst: Data pointer of the current block.
 * src: The register pointer of the thread, the size is NX * NY.
 * size_nx: The current block needs to load size_nx columns of data, this
 * parameter will be used when IsBoundary = true.
 * size_ny: The current block needs to load size_ny rows of data. This parameter
 * will be used when IsBoundary = true.
 * stride_nx: Each read one element stride stride_nx elements in the last dim.
 * stride_ny: Each read one element stride stride_ny elements in the first dim.
 */
496 497 498 499 500
template <typename Tx,
          typename Ty,
          int NX,
          int NY,
          int BlockSize,
501
          bool IsBoundary = false>
502 503 504 505 506
__device__ __inline__ void WriteData(Ty _global_ptr_* dst,
                                     const Tx* src,
                                     int size_nx,
                                     int size_ny,
                                     int stride_nx,
507
                                     int stride_ny) {
508 509 510 511 512 513 514 515 516
  int thread_offset = core_id();
  int left_size_nx = size_nx - thread_offset;
  __local__ Ty in_temp[1];

  // Each branch is added for better performance
  if (NX == 1 && NY == 1) {
    if (IsBoundary) {
      if (left_size_nx > 0) {
        in_temp[0] = static_cast<Ty>(src[0]);
517
        LM2GM(in_temp, dst + thread_offset, sizeof(Ty));
518 519 520
      }
    } else {
      in_temp[0] = static_cast<Ty>(src[0]);
521
      LM2GM(in_temp, dst + thread_offset, sizeof(Ty));
522 523 524 525 526 527 528 529 530 531 532
    }
  } else if (NX == 1) {
#pragma unroll
    for (int idy = 0; idy < NY; ++idy) {
      if (IsBoundary) {
        if (idy * stride_ny >= size_ny) {
          break;
        }
      }

      in_temp[0] = static_cast<Ty>(src[idy]);
533
      LM2GM(in_temp, dst + thread_offset + idy * stride_ny, sizeof(Ty));
534 535 536 537 538 539 540 541 542 543 544
    }
  } else if (NY == 1) {  // for NY == 1 and NX != 1
#pragma unroll
    for (int idx = 0; idx < NX; ++idx) {
      if (IsBoundary) {
        if (idx * stride_nx >= left_size_nx) {
          break;
        }
      }

      in_temp[0] = static_cast<Ty>(src[idx]);
545
      LM2GM(in_temp, dst + thread_offset + idx * stride_nx, sizeof(Ty));
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
    }
  } else {  // for NX != 1 and NY != 1
#pragma unroll
    for (int idx = 0; idx < NX; ++idx) {
      if (IsBoundary) {
        if (idx * stride_nx >= left_size_nx) {
          break;
        }
      }
#pragma unroll
      for (int idy = 0; idy < NY; ++idy) {
        if (IsBoundary) {
          if (idy * stride_ny >= size_ny) {
            break;
          }
        }
        in_temp[0] = static_cast<Ty>(src[idx + idy * NX]);
563 564
        LM2GM(in_temp,
              dst + thread_offset + idx * stride_nx + idy * stride_ny,
565
              sizeof(Ty));
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
      }
    }
  }
}

/**
 * @brief Initialize register with init_data.
 *
 * @template paraments
 * T: Data type of register.
 * NX: Number of data to initialize.
 *
 * @param:
 * dst: The register pointer of the thread, the size is NX.
 * init_data: The register pointer of init data, the size is NX.
 */
template <typename T, int NX, bool IsBoundary = false>
583
__device__ __inline__ void Init(T* dst, T* init_data, int num) {
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
#pragma unroll
  for (int i = 0; i < NX; i++) {
    if (IsBoundary) {
      if (i >= num) {
        break;
      }
    }
    dst[i] = init_data[i];
  }
}

/**
 * @brief Read 1D data from global memory to register with broadcast form.
 *
 * @template paraments
 * T: The type of data stored in the global memory.
 * NX: The number of data continuously loaded by each thread.
 * NY: The number of data rows loaded by each thread, only NY = 1 was supported.
 * BlockSize: Identifies the current device thread index method. For xpu,
 * core_id() is used as the index.
 * Rank: The shape size of out. eg in[1, 35], out[32, 35] then shape size is 2.
 * IsBoundary: Indicates whether to perform block access storage out-of-bounds
 * judgment. When the number of data processed by the block is less than
 * NX x NY x core_num(), boundary judgment is required to avoid memory access
 * crossing the boundary.
 *
 * @param:
 * dst: The register pointer of the thread, the size is NX * NY.
 * src: The original input data pointer of kernel.
 * block_offset: The data offset of this block, core_num() * blockIdx.x * NX;
 * config: Calculation configuration of broadcast. It is used to calculate the
 * coordinate mapping relationship between output data and input data.
 * total_num_output: Total number of original output.
 */
618 619 620 621 622
template <typename T,
          int NX,
          int NY,
          int BlockSize,
          int Rank,
623
          bool IsBoundary = false>
624 625 626 627 628 629
__device__ __inline__ void ReadDataBc(
    T* dst,
    const T _global_ptr_* src,
    uint32_t block_offset,
    const details::BroadcastConfig<Rank>& config,
    int total_num_output) {
630 631
  int thread_offset = block_offset + core_id() * NX;
  int index_src = 0;
632

633
  __local__ T in_temp;
634
#pragma unroll
635 636
  for (int nx = 0; nx < NX; ++nx) {
    int index_output = thread_offset + nx;
637 638 639 640 641 642
    index_src = 0;
    if (IsBoundary) {
      if (index_output >= total_num_output) {
        break;
      }
    }
643 644 645
    index_src = config(index_output);
    GM2LM(src + index_src, &in_temp, sizeof(T));
    dst[nx] = in_temp;
646 647 648
  }
}

649
}  // namespace kps
650
}  // namespace phi