repeat_interleave_kernel_impl.h 7.9 KB
Newer Older
S
seemingwang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/kernels/cpu/index_select_impl.h"
#include "paddle/phi/kernels/repeat_interleave_kernel.h"
#if defined(__NVCC__) || defined(__HIPCC__)
#include "paddle/phi/backends/gpu/gpu_decls.h"
#include "paddle/phi/backends/gpu/gpu_info.h"
W
Wang Xin 已提交
23
#include "paddle/phi/backends/gpu/gpu_primitives.h"
S
seemingwang 已提交
24 25 26 27 28 29 30 31 32
#include "paddle/phi/backends/gpu/gpu_resources.h"
#include "paddle/phi/kernels/primitive/functor_primitives.h"
#endif

#include "paddle/phi/kernels/funcs/repeat_tensor2index_tensor.h"

namespace phi {

#if defined(__NVCC__) || defined(__HIPCC__)
W
Wang Xin 已提交
33
using phi::PADDLE_CUDA_NUM_THREADS;
S
seemingwang 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
template <typename T, typename IndexT>
__global__ void index_select_cuda_kernel(const T* input,
                                         T* output,
                                         const IndexT* index,
                                         int64_t N,
                                         int64_t stride,
                                         int64_t size,
                                         int64_t delta) {
  int64_t idx = blockIdx.x * blockDim.x + threadIdx.x;
  if (idx >= N) {
    return;
  }

  int64_t pre_idx = idx / (stride * size);
  int64_t dim_idx = idx % (stride * size) / stride;
  IndexT src_dim_idx = index[dim_idx];
  int64_t input_idx = idx + (delta * pre_idx + src_dim_idx - dim_idx) * stride;
  output[idx] = input[input_idx];
}
#endif

template <typename T, typename Context>
void RepeatInterleaveKernel(const Context& ctx,
                            const DenseTensor& x,
                            int repeats,
                            int dim,
                            DenseTensor* out) {
W
wanghuancoder 已提交
61 62 63 64 65
  PADDLE_ENFORCE_GT(repeats,
                    0,
                    phi::errors::InvalidArgument(
                        "repeats must grater than 0, but got %d", repeats));

S
seemingwang 已提交
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
  auto place = ctx.GetPlace();
  auto cpu_place = phi::CPUPlace();

  auto input_dim = x.dims();
  if (dim < 0) {
    dim += input_dim.size();
  }

  DenseTensor index;
  int64_t index_size = input_dim[dim] * repeats;
  std::vector<int> index_vec(index_size);
  for (int i = 0; i < input_dim[dim]; i++) {
    std::fill_n(index_vec.begin() + i * repeats, repeats, i);
  }
  index.Resize(phi::make_ddim({index_size}));
  if (place == cpu_place) {
    DenseTensor x_copy = x;
83
    phi::TensorFromVector<int>(index_vec, ctx, &index);
S
seemingwang 已提交
84 85 86 87 88 89

    auto output_dim = phi::vectorize(x.dims());
    output_dim[dim] = index_size;
    out->Resize(phi::make_ddim(output_dim));
    phi::IndexSelectInner<Context, T, int>(ctx, &x_copy, index, out, dim);
#if defined(__NVCC__) || defined(__HIPCC__)
W
Wang Xin 已提交
90
  } else {
S
seemingwang 已提交
91 92
    auto stride_dim = phi::stride(input_dim);
    int64_t stride = stride_dim[dim];
93
    phi::TensorFromVector<int>(index_vec, ctx, &index);
S
seemingwang 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
    auto stream = ctx.stream();
    auto output_dim = phi::vectorize(x.dims());
    output_dim[dim] = index_size;
    out->Resize(phi::make_ddim(output_dim));
    ctx.template Alloc<T>(out);
    auto* out_data = out->data<T>();
    int64_t numel = out->numel();
    int64_t size = output_dim[dim];
    int64_t delta = input_dim[dim] - size;

    const int* index_data = index.data<int>();
    index_select_cuda_kernel<T, int>
        <<<(numel + PADDLE_CUDA_NUM_THREADS - 1) / PADDLE_CUDA_NUM_THREADS,
           PADDLE_CUDA_NUM_THREADS,
           0,
           stream>>>(
            x.data<T>(), out_data, index_data, numel, stride, size, delta);
  }
W
Wang Xin 已提交
112 113
#else
  }
S
seemingwang 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
#endif
}

template <typename T, typename Context>
void RepeatInterleaveWithTensorIndexKernel(const Context& ctx,
                                           const DenseTensor& x,
                                           const DenseTensor& repeats_tensor,
                                           int dim,
                                           DenseTensor* out) {
  auto place = ctx.GetPlace();
  auto cpu_place = phi::CPUPlace();

  auto input_dim = x.dims();
  if (dim < 0) {
    dim += input_dim.size();
  }
  DenseTensor index;
  PADDLE_ENFORCE_EQ(repeats_tensor.dims()[0] == x.dims()[dim],
                    true,
                    phi::errors::InvalidArgument(
                        "The length of Input(RepeatsTensor) must be the "
                        "same as length of Input(X) in axis. "
                        "But received: [%s], required: [%d].",
                        repeats_tensor.dims()[0],
                        x.dims()[dim]));
139
  const auto& index_type = repeats_tensor.dtype();
S
seemingwang 已提交
140
  bool index_type_match =
141
      index_type == phi::DataType::INT32 || index_type == phi::DataType::INT64;
S
seemingwang 已提交
142 143 144 145 146 147
  PADDLE_ENFORCE_EQ(
      index_type_match,
      true,
      phi::errors::InvalidArgument(
          "Input(RepeatsTensor) holds the wrong type, it holds %s, but "
          "desires to be %s or %s",
148 149 150
          DataTypeToString(index_type),
          DataTypeToString(phi::DataType::INT32),
          DataTypeToString(phi::DataType::INT64)));
S
seemingwang 已提交
151 152
  if (place == cpu_place) {
    auto x_copy = x;
153
    if (index_type == phi::DataType::INT32) {
S
seemingwang 已提交
154 155 156 157 158 159
      phi::funcs::RepeatsTensor2IndexTensor<Context, int>(
          ctx, repeats_tensor, &index);
      auto output_dim = phi::vectorize(x.dims());
      output_dim[dim] = index.dims()[0];
      out->Resize(phi::make_ddim(output_dim));
      IndexSelectInner<Context, T, int>(ctx, &x_copy, index, out, dim);
160
    } else if (index_type == phi::DataType::INT64) {
S
seemingwang 已提交
161 162 163 164 165 166 167 168
      phi::funcs::RepeatsTensor2IndexTensor<Context, int64_t>(
          ctx, repeats_tensor, &index);
      auto output_dim = phi::vectorize(x.dims());
      output_dim[dim] = index.dims()[0];
      out->Resize(phi::make_ddim(output_dim));
      IndexSelectInner<Context, T, int64_t>(ctx, &x_copy, index, out, dim);
    }
#if defined(__NVCC__) || defined(__HIPCC__)
W
Wang Xin 已提交
169
  } else {
S
seemingwang 已提交
170 171 172 173
    auto stride_dim = phi::stride(input_dim);
    int64_t stride = stride_dim[dim];
    auto stream = ctx.stream();
    auto* in_data = x.data<T>();
174
    if (index_type == phi::DataType::INT64) {
S
seemingwang 已提交
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
      phi::funcs::RepeatsTensor2IndexTensor<Context, int64_t>(
          ctx, repeats_tensor, &index);

      const int64_t* index_data = index.data<int64_t>();
      auto output_dim = phi::vectorize(x.dims());
      output_dim[dim] = index.dims()[0];
      out->Resize(phi::make_ddim(output_dim));
      T* out_data = ctx.template Alloc<T>(out);
      int64_t numel = out->numel();
      int64_t size = output_dim[dim];
      int64_t delta = input_dim[dim] - size;

      index_select_cuda_kernel<T, int64_t>
          <<<(numel + PADDLE_CUDA_NUM_THREADS - 1) / PADDLE_CUDA_NUM_THREADS,
             PADDLE_CUDA_NUM_THREADS,
             0,
             stream>>>(
              in_data, out_data, index_data, numel, stride, size, delta);
    } else {
      phi::funcs::RepeatsTensor2IndexTensor<Context, int>(
          ctx, repeats_tensor, &index);

      const int* index_data = index.data<int>();
      auto output_dim = phi::vectorize(x.dims());
      output_dim[dim] = index.dims()[0];
      out->Resize(phi::make_ddim(output_dim));
      T* out_data = ctx.template Alloc<T>(out);
      int64_t numel = out->numel();
      int64_t size = output_dim[dim];
      int64_t delta = input_dim[dim] - size;
      index_select_cuda_kernel<T, int>
          <<<(numel + PADDLE_CUDA_NUM_THREADS - 1) / PADDLE_CUDA_NUM_THREADS,
             PADDLE_CUDA_NUM_THREADS,
             0,
             stream>>>(
              in_data, out_data, index_data, numel, stride, size, delta);
    }
  }
W
Wang Xin 已提交
213 214
#else
  }
S
seemingwang 已提交
215 216 217 218
#endif
}

}  // namespace phi