alexnet.py 1.9 KB
Newer Older
D
dangqingqing 已提交
1 2 3 4
#!/usr/bin/env python

from paddle.trainer_config_helpers import *

5 6
height = 227
width = 227
D
dangqingqing 已提交
7
num_class = 1000
8
batch_size = get_config_arg('batch_size', int, 128)
T
tensor-tang 已提交
9
use_mkldnn = get_config_arg('use_mkldnn', bool, False)
D
dangqingqing 已提交
10

11 12 13
args = {'height': height, 'width': width, 'color': True, 'num_class': num_class}
define_py_data_sources2(
    "train.list", None, module="provider", obj="process", args=args)
D
dangqingqing 已提交
14 15

settings(
16 17 18 19
    batch_size=batch_size,
    learning_rate=0.01 / batch_size,
    learning_method=MomentumOptimizer(0.9),
    regularization=L2Regularization(0.0005 * batch_size))
D
dangqingqing 已提交
20 21 22

# conv1
net = data_layer('data', size=height * width * 3)
23 24 25 26 27 28 29
net = img_conv_layer(
    input=net,
    filter_size=11,
    num_channels=3,
    num_filters=96,
    stride=4,
    padding=1)
D
dangqingqing 已提交
30
net = img_cmrnorm_layer(input=net, size=5, scale=0.0001, power=0.75)
31
net = img_pool_layer(input=net, pool_size=3, stride=2)
D
dangqingqing 已提交
32 33

# conv2
34
net = img_conv_layer(
T
tensor-tang 已提交
35 36 37 38 39 40
    input=net,
    filter_size=5,
    num_filters=256,
    stride=1,
    padding=2,
    groups=2 if use_mkldnn else 1)
D
dangqingqing 已提交
41 42 43 44
net = img_cmrnorm_layer(input=net, size=5, scale=0.0001, power=0.75)
net = img_pool_layer(input=net, pool_size=3, stride=2)

# conv3
45 46
net = img_conv_layer(
    input=net, filter_size=3, num_filters=384, stride=1, padding=1)
D
dangqingqing 已提交
47
# conv4
48
net = img_conv_layer(
T
tensor-tang 已提交
49 50 51 52 53 54
    input=net,
    filter_size=3,
    num_filters=384,
    stride=1,
    padding=1,
    groups=2 if use_mkldnn else 1)
D
dangqingqing 已提交
55 56

# conv5
57
net = img_conv_layer(
T
tensor-tang 已提交
58 59 60 61 62 63
    input=net,
    filter_size=3,
    num_filters=256,
    stride=1,
    padding=1,
    groups=2 if use_mkldnn else 1)
D
dangqingqing 已提交
64 65
net = img_pool_layer(input=net, pool_size=3, stride=2)

66 67 68 69 70 71 72 73 74 75
net = fc_layer(
    input=net,
    size=4096,
    act=ReluActivation(),
    layer_attr=ExtraAttr(drop_rate=0.5))
net = fc_layer(
    input=net,
    size=4096,
    act=ReluActivation(),
    layer_attr=ExtraAttr(drop_rate=0.5))
D
dangqingqing 已提交
76 77 78
net = fc_layer(input=net, size=1000, act=SoftmaxActivation())

lab = data_layer('label', num_class)
79
loss = cross_entropy(input=net, label=lab)
D
dangqingqing 已提交
80
outputs(loss)