test_fused_rotary_position_embedding.py 4.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
#   Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

import numpy as np

import paddle
from paddle.fluid import core
from paddle.incubate.nn.functional import fused_rotary_position_embedding


def deal_qkv(init_q, init_k, init_v):
    perm = [0, 2, 1, 3]
    q = paddle.transpose(x=init_q, perm=perm)
    k = paddle.transpose(x=init_k, perm=perm)
    v = paddle.transpose(x=init_v, perm=perm)
    return q, k, v


def mult_qkv(value, cos_tensor, sin_tensor):
    rotate_half_q = paddle.reshape(
        paddle.stack([value[:, :, :, 1::2], value[:, :, :, 0::2]], axis=-1),
        paddle.shape(value),
    )
    query = paddle.add(
        paddle.multiply(value, cos_tensor),
        paddle.multiply(rotate_half_q, sin_tensor),
    )
    return query


def paddle_fused_rotary_position_embedding(init_q, init_k, init_v):
    q, k, v = deal_qkv(init_q, init_k, init_v)

    pos_seq = paddle.arange(0, q.shape[2], 1, dtype="float32")
    indices = paddle.arange(0, q.shape[3], 2, dtype="float32")

    indices = 1 / 10000 ** (indices / q.shape[3])
    sinusoid_inp = pos_seq.unsqueeze(1) * indices.unsqueeze(0)

    sin_sin = np.empty((q.shape[2] * q.shape[3]), dtype=np.float32)
    cos_cos = np.empty((q.shape[2] * q.shape[3]), dtype=np.float32)
    numpy_array = sinusoid_inp.numpy()
    iter_array = np.nditer(numpy_array)

    i = 0

    for value in iter_array:
        sin_sin[i * 2] = -1 * np.sin(value)
        cos_cos[i * 2 + 0] = np.cos(value)
        sin_sin[i * 2 + 1] = np.sin(value)
        cos_cos[i * 2 + 1] = np.cos(value)
        i += 1

    sin_tensor = paddle.reshape(
        paddle.to_tensor(sin_sin, place=paddle.CPUPlace()),
        [1, 1, q.shape[2], q.shape[3]],
    )
    cos_tensor = paddle.reshape(
        paddle.to_tensor(cos_cos, place=paddle.CPUPlace()),
        [1, 1, q.shape[2], q.shape[3]],
    )

    query = mult_qkv(q, cos_tensor, sin_tensor)
    value = mult_qkv(v, cos_tensor, sin_tensor)
    key = mult_qkv(k, cos_tensor, sin_tensor)

    r_query, r_key, r_value = deal_qkv(query, key, value)

    return r_query, r_key, r_value


@unittest.skipIf(
    not core.is_compiled_with_cuda(),
    "core is not compiled with CUDA ",
)
class TestFusedRotaryPositionEmbedding(unittest.TestCase):
    def setUp(self):
        self.shape = [1, 16, 1, 16]
        self.dtype = 'float32'
        self.training = True
        self.seed = 1203

    def get_paddle_tensor(self):
        tmp = paddle.randn(self.shape, self.dtype)
        tmp.stop_gradient = False
        return tmp

    def get_forward_backward(self, rope_function, seed):
        paddle.disable_static()
        paddle.seed(seed)
        fw = []
        bw = []
        tensor_q = self.get_paddle_tensor()
        tensor_k = self.get_paddle_tensor()
        tensor_v = self.get_paddle_tensor()
        out_q, out_k, out_v = rope_function(tensor_q, tensor_k, tensor_v)

        fw.append(out_q)
        fw.append(out_k)
        fw.append(out_v)

        out_gq = paddle.randn(out_q.shape, self.dtype)
        out_gk = paddle.randn(out_q.shape, self.dtype)
        out_gv = paddle.randn(out_q.shape, self.dtype)
        paddle.autograd.backward(
            [out_q, out_k, out_v], [out_gq, out_gk, out_gv], True
        )
        bw.append(tensor_q)
        bw.append(tensor_k)
        bw.append(tensor_v)

        return fw, bw

    def test_fused_dropout_add(self):
        p_fw, p_bw = self.get_forward_backward(
            paddle_fused_rotary_position_embedding, seed=self.seed
        )
        f_fw, f_bw = self.get_forward_backward(
            fused_rotary_position_embedding, seed=self.seed
        )
        for i in range(len(p_fw)):
            np.testing.assert_allclose(
                p_fw[i].numpy(), f_fw[i].numpy(), rtol=1e-05
            )
            np.testing.assert_allclose(
                p_bw[i].numpy(), f_bw[i].numpy(), rtol=1e-05
            )


if __name__ == '__main__':
    unittest.main()