activation.py 4.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from .. import functional as F
from paddle.nn import Layer

__all__ = []


class ReLU(Layer):
    """
    Sparse ReLU Activation.

    .. math::

        ReLU(x) = max(x, 0)

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Sparse Tensor with any shape.
        - output: Sparse Tensor with the same shape as input.

    Examples:
        .. code-block:: python

            import paddle
            from paddle.fluid.framework import _test_eager_guard
            with _test_eager_guard():
                x = [[0, -1, 0, 2], [0, 0, -3, 0], [4, 5, 0, 0]]
                dense_x = paddle.to_tensor(x, dtype='float32')
                sparse_dim = 2
                sparse_x = dense_x.to_sparse_coo(sparse_dim)
47
                relu = paddle.incubate.sparse.nn.ReLU()
48 49 50 51 52 53 54 55 56 57 58 59 60 61
                out = relu(sparse_x)
                #out.values: [0., 2., 0., 4., 5.]
    """

    def __init__(self, name=None):
        super(ReLU, self).__init__()
        self._name = name

    def forward(self, x):
        return F.relu(x, self._name)

    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str
62 63 64 65 66 67 68


class Softmax(Layer):
    """
    sparse softmax activation, x must be SparseCsrTensor or SparseCooTensor.

    Note:
69
        Only support axis=-1 for SparseCsrTensor, which is faster when read data 
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
        by row (axis=-1).

    From the point of view of dense matrix, for each row :math:`i` and each column :math:`j` 
    in the matrix, we have:

    .. math::

        softmax_ij = \frac{\exp(x_ij - max_j(x_ij))}{\sum_j(exp(x_ij - max_j(x_ij))}

    Parameters:
        axis (int, optional): The axis along which to perform softmax calculations. Only support -1 for SparseCsrTensor.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: SparseCooTensor / SparseCsrTensor with any shape.
        - output: Sparse Tensor with the same shape as input.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            from paddle.fluid.framework import _test_eager_guard

            paddle.seed(100)

            with _test_eager_guard():
                mask = np.random.rand(3, 4) < 0.5
                np_x = np.random.rand(3, 4) * mask
                # [[0.         0.         0.96823406 0.19722934]
                #  [0.94373937 0.         0.02060066 0.71456372]
                #  [0.         0.         0.         0.98275049]]

                csr = paddle.to_tensor(np_x).to_sparse_csr()
                # Tensor(shape=[3, 4], dtype=paddle.float64, place=Place(gpu:0), stop_gradient=True, 
                #        crows=[0, 2, 5, 6], 
                #        cols=[2, 3, 0, 2, 3, 3], 
                #        values=[0.96823406, 0.19722934, 0.94373937, 0.02060066, 0.71456372,
                #                0.98275049])

                m = paddle.incubate.sparse.nn.Softmax()
                out = m(csr)
                # Tensor(shape=[3, 4], dtype=paddle.float64, place=Place(gpu:0), stop_gradient=True, 
                #        crows=[0, 2, 5, 6], 
                #        cols=[2, 3, 0, 2, 3, 3], 
                #        values=[0.68373820, 0.31626180, 0.45610887, 0.18119845, 0.36269269,
                #                1.        ])
    """

    def __init__(self, axis=-1, name=None):
        super(Softmax, self).__init__()
        self._axis = axis
        self._name = name

    def forward(self, x):
        return F.softmax(x, self._axis, self._name)

    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str