common_sparse_table.cc 16.7 KB
Newer Older
T
tangwei12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/distributed/table/common_sparse_table.h"
#include <algorithm>
#include <sstream>
#include "paddle/fluid/distributed/common/utils.h"
#include "paddle/fluid/distributed/table/depends/large_scale_kv.h"
#include "paddle/fluid/framework/generator.h"
#include "paddle/fluid/string/printf.h"
#include "paddle/fluid/string/string_helper.h"

24
#define PSERVER_SAVE_SUFFIX "_txt"
25

T
tangwei12 已提交
26 27 28
namespace paddle {
namespace distributed {

29 30
enum SaveMode { all, base, delta };

T
tangwei12 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
struct Meta {
  std::string param;
  int shard_id;
  std::vector<std::string> names;
  std::vector<int> dims;
  uint64_t count;
  std::unordered_map<std::string, int> dims_map;

  explicit Meta(const std::string& metapath) {
    std::ifstream file(metapath);
    std::string line;
    int num_lines = 0;
    while (std::getline(file, line)) {
      if (StartWith(line, "#")) {
        continue;
      }
      auto pairs = paddle::string::split_string<std::string>(line, "=");
      PADDLE_ENFORCE_EQ(
          pairs.size(), 2,
          paddle::platform::errors::InvalidArgument(
              "info in %s except k=v, but got %s", metapath, line));

      if (pairs[0] == "param") {
        param = pairs[1];
      }
      if (pairs[0] == "shard_id") {
        shard_id = std::stoi(pairs[1]);
      }
      if (pairs[0] == "row_names") {
        names = paddle::string::split_string<std::string>(pairs[1], ",");
      }
      if (pairs[0] == "row_dims") {
        auto dims_strs =
            paddle::string::split_string<std::string>(pairs[1], ",");
        for (auto& str : dims_strs) {
          dims.push_back(std::stoi(str));
        }
      }
      if (pairs[0] == "count") {
        count = std::stoull(pairs[1]);
      }
    }
    for (int x = 0; x < names.size(); ++x) {
      dims_map[names[x]] = dims[x];
    }
  }

  Meta(std::string param, int shard_id, std::vector<std::string> row_names,
       std::vector<int> dims, uint64_t count) {
    this->param = param;
    this->shard_id = shard_id;
    this->names = row_names;
    this->dims = dims;
    this->count = count;
  }

  std::string ToString() {
    std::stringstream ss;
    ss << "param=" << param << "\n";
    ss << "shard_id=" << shard_id << "\n";
    ss << "row_names=" << paddle::string::join_strings(names, ',') << "\n";
    ss << "row_dims=" << paddle::string::join_strings(dims, ',') << "\n";
    ss << "count=" << count << "\n";
    return ss.str();
  }
};

void ProcessALine(const std::vector<std::string>& columns, const Meta& meta,
                  std::vector<std::vector<float>>* values) {
100 101 102
  auto colunmn_size = columns.size();
  auto load_values =
      paddle::string::split_string<std::string>(columns[colunmn_size - 1], ",");
103
  values->reserve(meta.names.size());
T
tangwei12 已提交
104

105 106
  int offset = 0;
  for (int x = 0; x < meta.names.size(); ++x) {
T
tangwei12 已提交
107
    std::vector<float> val;
108 109 110
    auto start = load_values.begin() + offset;
    auto end = load_values.begin() + offset + meta.dims[x];
    PADDLE_ENFORCE_LE(offset + meta.dims[x], load_values.size(),
T
tangwei12 已提交
111
                      paddle::platform::errors::InvalidArgument(
112 113 114 115 116
                          "The data format in txt does not meet the field "
                          "requirements defined in meta"));

    std::transform(start, end, std::back_inserter(val),
                   [](std::string va) { return std::stof(va); });
T
tangwei12 已提交
117
    values->push_back(val);
118
    offset += meta.dims[x];
T
tangwei12 已提交
119 120 121 122 123
  }
}

int64_t SaveToText(std::ostream* os, std::shared_ptr<ValueBlock> block,
                   const int mode) {
124
  int64_t not_save_num = 0;
T
tangwei12 已提交
125
  for (auto value : block->values_) {
126 127 128 129 130
    if (mode == SaveMode::delta && !value.second->need_save_) {
      not_save_num++;
      continue;
    }

131
    auto* vs = value.second->data_.data();
T
tangwei12 已提交
132 133
    std::stringstream ss;
    auto id = value.first;
134 135
    ss << id << "\t" << value.second->count_ << "\t"
       << value.second->unseen_days_ << "\t" << value.second->is_entry_ << "\t";
136 137 138 139

    for (int i = 0; i < block->value_length_; i++) {
      ss << vs[i];
      ss << ",";
T
tangwei12 已提交
140
    }
141

T
tangwei12 已提交
142 143 144
    ss << "\n";

    os->write(ss.str().c_str(), sizeof(char) * ss.str().size());
145 146 147 148

    if (mode == SaveMode::base || mode == SaveMode::delta) {
      value.second->need_save_ = false;
    }
T
tangwei12 已提交
149 150
  }

151
  return block->values_.size() - not_save_num;
T
tangwei12 已提交
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
}

int64_t LoadFromText(const std::string& valuepath, const std::string& metapath,
                     const int pserver_id, const int pserver_num,
                     const int local_shard_num,
                     std::vector<std::shared_ptr<ValueBlock>>* blocks) {
  Meta meta = Meta(metapath);

  int num_lines = 0;
  std::ifstream file(valuepath);
  std::string line;

  while (std::getline(file, line)) {
    auto values = paddle::string::split_string<std::string>(line, "\t");
    auto id = std::stoull(values[0]);

    if (id % pserver_num != pserver_id) {
169
      VLOG(3) << "will not load " << values[0] << " from " << valuepath
T
tangwei12 已提交
170 171 172 173 174 175 176 177 178
              << ", please check id distribution";
      continue;
    }

    auto shard_id = id % local_shard_num;
    auto block = blocks->at(shard_id);

    std::vector<std::vector<float>> kvalues;
    ProcessALine(values, meta, &kvalues);
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193

    block->Init(id, false);

    auto value_instant = block->GetValue(id);
    if (values.size() == 5) {
      value_instant->count_ = std::stoi(values[1]);
      value_instant->unseen_days_ = std::stoi(values[2]);
      value_instant->is_entry_ = static_cast<bool>(std::stoi(values[3]));
    }

    std::vector<float*> block_values = block->Get(id, meta.names, meta.dims);
    auto blas = GetBlas<float>();
    for (int x = 0; x < meta.names.size(); ++x) {
      blas.VCOPY(meta.dims[x], kvalues[x].data(), block_values[x]);
    }
T
tangwei12 已提交
194 195 196 197 198 199 200 201 202 203 204 205 206 207
  }

  return 0;
}

int32_t CommonSparseTable::initialize() {
  _shards_task_pool.resize(task_pool_size_);
  for (int i = 0; i < _shards_task_pool.size(); ++i) {
    _shards_task_pool[i].reset(new ::ThreadPool(1));
  }

  sync = _config.common().sync();
  VLOG(1) << "table " << _config.common().table_name() << " is sync: " << sync;

C
Chengmo 已提交
208 209
  _global_lr = new float(1.0);

T
tangwei12 已提交
210 211 212
  auto common = _config.common();
  int size = static_cast<int>(common.params().size());

213
  size_t offset = 0;
T
tangwei12 已提交
214 215 216
  for (int x = 0; x < size; ++x) {
    auto& varname = common.params()[x];
    auto& dim = common.dims()[x];
217 218 219 220 221 222 223

    value_idx_[varname] = x;
    value_names_.push_back(varname);
    value_dims_.push_back(dim);
    value_offsets_.push_back(offset);
    initializer_attrs_.push_back(common.initializers()[x]);

T
tangwei12 已提交
224 225
    if (varname == "Param") {
      param_dim_ = dim;
226
      param_offset_ = offset;
T
tangwei12 已提交
227
    }
228 229

    offset += dim;
T
tangwei12 已提交
230 231
  }

232 233 234 235 236 237 238 239 240
  initialize_value();
  initialize_optimizer();
  initialize_recorder();
  return 0;
}

int32_t CommonSparseTable::initialize_recorder() { return 0; }

int32_t CommonSparseTable::initialize_value() {
T
tangwei12 已提交
241
  auto common = _config.common();
T
tangwei12 已提交
242
  shard_values_.reserve(task_pool_size_);
243

T
tangwei12 已提交
244
  for (int x = 0; x < task_pool_size_; ++x) {
T
tangwei12 已提交
245 246 247
    auto shard = std::make_shared<ValueBlock>(
        value_names_, value_dims_, value_offsets_, value_idx_,
        initializer_attrs_, common.entry());
248

T
tangwei12 已提交
249 250
    shard_values_.emplace_back(shard);
  }
T
tangwei12 已提交
251 252 253 254 255 256 257 258 259 260 261

  auto accessor = _config.accessor();

  std::vector<uint64_t> feasigns;

  for (size_t x = 0; x < accessor.fea_dim(); ++x) {
    if (x % _shard_num == _shard_idx) {
      feasigns.push_back(x);
    }
  }

262
  VLOG(3) << "has " << feasigns.size() << " ids need to be pre inited";
T
tangwei12 已提交
263 264 265 266 267 268 269 270 271 272 273 274

  auto buckets = bucket(feasigns.size(), 10);
  for (int x = 0; x < 10; ++x) {
    auto bucket_feasigns = buckets[x + 1] - buckets[x];
    std::vector<uint64_t> ids(bucket_feasigns);
    std::copy(feasigns.begin() + buckets[x], feasigns.begin() + buckets[x + 1],
              ids.begin());
    std::vector<float> pulls;
    pulls.resize(bucket_feasigns * param_dim_);
    pull_sparse(pulls.data(), ids.data(), bucket_feasigns);
  }

T
tangwei12 已提交
275 276 277 278 279 280 281 282
  return 0;
}

int32_t CommonSparseTable::initialize_optimizer() {
  auto common = _config.common();
  auto name = common.name();

  if (name == "sgd") {
283 284
    optimizer_ = std::make_shared<SSGD>(value_names_, value_dims_,
                                        value_offsets_, value_idx_);
C
Chengmo 已提交
285
    optimizer_->set_global_lr(_global_lr);
T
tangwei12 已提交
286
  } else if (name == "adam") {
287 288
    optimizer_ = std::make_shared<SAdam>(value_names_, value_dims_,
                                         value_offsets_, value_idx_);
C
Chengmo 已提交
289
    optimizer_->set_global_lr(_global_lr);
T
tangwei12 已提交
290
  } else if (name == "sum") {
291 292
    optimizer_ = std::make_shared<SSUM>(value_names_, value_dims_,
                                        value_offsets_, value_idx_);
T
tangwei12 已提交
293
  } else {
294
    VLOG(3) << "init optimizer failed";
T
tangwei12 已提交
295 296
  }

297
  VLOG(3) << "init optimizer " << name << " done";
T
tangwei12 已提交
298 299 300
  return 0;
}

C
Chengmo 已提交
301 302 303 304 305 306
int32_t CommonSparseTable::set_global_lr(float* lr) {
  _global_lr = lr;
  optimizer_->set_global_lr(_global_lr);
  return 0;
}

T
tangwei12 已提交
307 308 309
int32_t CommonSparseTable::load(const std::string& path,
                                const std::string& param) {
  rwlock_->WRLock();
310
  VLOG(3) << "sparse table load with " << path << " with meta " << param;
T
tangwei12 已提交
311 312 313 314 315 316 317 318 319 320
  LoadFromText(path, param, _shard_idx, _shard_num, task_pool_size_,
               &shard_values_);
  rwlock_->UNLock();
  return 0;
}

int32_t CommonSparseTable::save(const std::string& dirname,
                                const std::string& param) {
  rwlock_->WRLock();
  int mode = std::stoi(param);
321
  VLOG(3) << "sparse table save: " << dirname << " mode: " << mode;
T
tangwei12 已提交
322 323

  auto varname = _config.common().table_name();
324 325
  std::string var_store =
      string::Sprintf("%s/%s%s", dirname, varname, PSERVER_SAVE_SUFFIX);
T
tangwei12 已提交
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
  MkDirRecursively(var_store.c_str());

  VLOG(3) << "save " << varname << " in dir: " << var_store << " begin";
  std::vector<std::string> params(_config.common().params().begin(),
                                  _config.common().params().end());
  std::string shard_var_pre =
      string::Sprintf("%s.block%d", varname, _shard_idx);

  std::string value_ = string::Sprintf("%s/%s.txt", var_store, shard_var_pre);

  std::unique_ptr<std::ofstream> value_out(new std::ofstream(value_));

  int64_t total_ins = 0;
  for (int shard_id = 0; shard_id < task_pool_size_; ++shard_id) {
    // save values
341
    total_ins += SaveToText(value_out.get(), shard_values_[shard_id], mode);
T
tangwei12 已提交
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
  }
  value_out->close();

  // save meta
  std::stringstream stream;
  stream << "param=" << _config.common().table_name() << "\n";
  stream << "shard_id=" << _shard_idx << "\n";
  stream << "row_names="
         << paddle::string::join_strings(_config.common().params(), ',')
         << "\n";
  stream << "row_dims="
         << paddle::string::join_strings(_config.common().dims(), ',') << "\n";
  stream << "count=" << total_ins << "\n";
  std::string meta_ = string::Sprintf("%s/%s.meta", var_store, shard_var_pre);
  std::unique_ptr<std::ofstream> meta_out(new std::ofstream(meta_));
  meta_out->write(stream.str().c_str(), sizeof(char) * stream.str().size());
  meta_out->close();
  VLOG(3) << "save " << varname << " in dir: " << var_store << " done";
  rwlock_->UNLock();
  return 0;
}

std::pair<int64_t, int64_t> CommonSparseTable::print_table_stat() {
  int64_t feasign_size = 0;
  int64_t mf_size = 0;

  for (auto& value : shard_values_) {
    feasign_size += value->values_.size();
  }

  return {feasign_size, mf_size};
}

int32_t CommonSparseTable::pour() {
  rwlock_->RDLock();

  std::vector<float> values;
  std::vector<uint64_t> keys;

  keys.reserve(pull_reservoir_.size());
  values.reserve(pull_reservoir_.size() * param_dim_);

  for (auto& val : pull_reservoir_) {
    keys.push_back(val.first);
    auto& reservoir = val.second;
    reservoir.avg();
    std::copy(reservoir.values.begin(), reservoir.values.end(),
              std::back_inserter(values));
  }
  _push_sparse(keys.data(), values.data(), pull_reservoir_.size());

  pull_reservoir_.clear();
  rwlock_->UNLock();
  return 0;
}

int32_t CommonSparseTable::pull_sparse(float* pull_values, const uint64_t* keys,
                                       size_t num) {
  rwlock_->RDLock();

  std::vector<std::vector<uint64_t>> offset_bucket;
  offset_bucket.resize(task_pool_size_);

  for (int x = 0; x < num; ++x) {
    auto y = keys[x] % task_pool_size_;
    offset_bucket[y].push_back(x);
  }

  std::vector<std::future<int>> tasks(task_pool_size_);

  for (int shard_id = 0; shard_id < task_pool_size_; ++shard_id) {
    tasks[shard_id] = _shards_task_pool[shard_id]->enqueue(
414
        [this, shard_id, &keys, &offset_bucket, &pull_values]() -> int {
T
tangwei12 已提交
415 416 417 418 419 420
          auto& block = shard_values_[shard_id];
          auto& offsets = offset_bucket[shard_id];

          for (int i = 0; i < offsets.size(); ++i) {
            auto offset = offsets[i];
            auto id = keys[offset];
421
            auto* value = block->Init(id);
422 423
            std::copy_n(value + param_offset_, param_dim_,
                        pull_values + param_dim_ * offset);
T
tangwei12 已提交
424
          }
425

T
tangwei12 已提交
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
          return 0;
        });
  }

  for (size_t shard_id = 0; shard_id < tasks.size(); ++shard_id) {
    tasks[shard_id].wait();
  }
  rwlock_->UNLock();
  return 0;
}

int32_t CommonSparseTable::_push_sparse(const uint64_t* keys,
                                        const float* values, size_t num) {
  rwlock_->RDLock();
  std::vector<std::vector<uint64_t>> offset_bucket;
  offset_bucket.resize(task_pool_size_);

  for (int x = 0; x < num; ++x) {
    auto y = keys[x] % task_pool_size_;
    offset_bucket[y].push_back(x);
  }

  std::vector<std::future<int>> tasks(task_pool_size_);

  for (int shard_id = 0; shard_id < task_pool_size_; ++shard_id) {
    tasks[shard_id] = _shards_task_pool[shard_id]->enqueue(
        [this, shard_id, &keys, &values, num, &offset_bucket]() -> int {
          auto& offsets = offset_bucket[shard_id];
          optimizer_->update(keys, values, num, offsets,
                             shard_values_[shard_id].get());
          return 0;
        });
  }

  for (size_t shard_id = 0; shard_id < tasks.size(); ++shard_id) {
    tasks[shard_id].wait();
  }
  rwlock_->UNLock();
  return 0;
}

int32_t CommonSparseTable::push_sparse(const uint64_t* keys,
                                       const float* values, size_t num) {
  if (sync) {
    std::future<int> task =
        _shards_task_pool[0]->enqueue([this, &keys, &values, num]() -> int {
          for (int x = 0; x < num; ++x) {
            auto id = keys[x];
            auto has = pull_reservoir_.find(id);

            if (has == pull_reservoir_.end()) {
              pull_reservoir_[id] = ReservoirValue<float>(param_dim_);
            }

            auto& reservoir = pull_reservoir_[id];
            reservoir.add(values + x * param_dim_, param_dim_);
          }
          return 0;
        });
    task.wait();
  } else {
    _push_sparse(keys, values, num);
  }

  return 0;
}

int32_t CommonSparseTable::push_sparse_param(const uint64_t* keys,
                                             const float* values, size_t num) {
  rwlock_->RDLock();

  std::vector<std::vector<uint64_t>> offset_bucket;
  offset_bucket.resize(task_pool_size_);

  for (int x = 0; x < num; ++x) {
    auto y = keys[x] % task_pool_size_;
    offset_bucket[y].push_back(x);
  }

  std::vector<std::future<int>> tasks(task_pool_size_);

  for (int shard_id = 0; shard_id < task_pool_size_; ++shard_id) {
    tasks[shard_id] = _shards_task_pool[shard_id]->enqueue(
509
        [this, shard_id, &keys, &offset_bucket, &values]() -> int {
T
tangwei12 已提交
510 511 512 513 514 515
          auto& block = shard_values_[shard_id];
          auto& offsets = offset_bucket[shard_id];

          for (int i = 0; i < offsets.size(); ++i) {
            auto offset = offsets[i];
            auto id = keys[offset];
516
            auto* value = block->Init(id, false);
517 518
            std::copy_n(values + param_dim_ * offset, param_dim_,
                        value + param_offset_);
519
            block->SetEntry(id, true);
T
tangwei12 已提交
520 521 522 523 524 525 526 527 528 529 530 531 532 533
          }
          return 0;
        });
  }

  for (size_t shard_id = 0; shard_id < tasks.size(); ++shard_id) {
    tasks[shard_id].wait();
  }
  rwlock_->UNLock();
  return 0;
}

int32_t CommonSparseTable::flush() { return 0; }

534 535 536
int32_t CommonSparseTable::shrink(const std::string& param) {
  rwlock_->WRLock();
  int threshold = std::stoi(param);
537
  VLOG(3) << "sparse table shrink: " << threshold;
538 539 540

  for (int shard_id = 0; shard_id < task_pool_size_; ++shard_id) {
    // shrink
541
    VLOG(4) << shard_id << " " << task_pool_size_ << " begin shrink";
542 543 544
    shard_values_[shard_id]->Shrink(threshold);
  }
  rwlock_->UNLock();
T
tangwei12 已提交
545 546
  return 0;
}
547

T
tangwei12 已提交
548 549 550 551
void CommonSparseTable::clear() { VLOG(0) << "clear coming soon"; }

}  // namespace distributed
}  // namespace paddle