test_sparse_utils_api.cc 9.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
11 12
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.  See
the License for the specific language governing permissions and
13 14 15 16 17
limitations under the License. */

#include <gtest/gtest.h>
#include <memory>

18
#include "paddle/phi/api/include/api.h"
19

20
#include "paddle/phi/api/include/sparse_api.h"
21

22 23 24 25
#include "paddle/phi/api/lib/utils/allocator.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/sparse_coo_tensor.h"
26 27 28 29 30

TEST(API, to_sparse_coo) {
  const auto alloc = std::make_shared<paddle::experimental::DefaultAllocator>(
      paddle::platform::CPUPlace());

31
  auto dense_x = std::make_shared<phi::DenseTensor>(
32
      alloc.get(),
33 34 35
      phi::DenseTensorMeta(phi::DataType::FLOAT32,
                           phi::make_ddim({3, 3}),
                           phi::DataLayout::NCHW));
36

37
  phi::CPUPlace cpu;
38 39 40 41 42 43 44 45 46 47 48
  const int64_t sparse_dim = 2;
  auto* dense_x_data = dense_x->mutable_data<float>(cpu);
  float dense_data[3][3] = {{0.0, 1.0, 0.0}, {2.0, 0.0, 3.0}, {3.2, 0.0, 0.0}};
  std::vector<float> non_zero_data = {1.0, 2.0, 3.0, 3.2};
  std::vector<int64_t> indices_data = {0, 1, 1, 2, 1, 0, 2, 0};
  std::vector<int64_t> cols_data = {1, 0, 2, 0};
  std::vector<int64_t> crows_data = {0, 1, 3, 4};
  const int64_t non_zero_num = 4;

  std::copy(&dense_data[0][0], &dense_data[0][0] + 9, dense_x_data);

49
  phi::CPUContext dev_ctx_cpu;
W
Wilber 已提交
50
  dev_ctx_cpu.Init();
51 52 53 54

  // 1. test dense_to_sparse_coo
  paddle::experimental::Tensor x(dense_x);
  auto out = paddle::experimental::sparse::to_sparse_coo(
55 56
      x, phi::Backend::CPU, sparse_dim);
  auto coo = std::dynamic_pointer_cast<phi::SparseCooTensor>(out.impl());
57 58 59 60 61 62 63 64 65
  ASSERT_EQ(coo->nnz(), non_zero_num);
  int cmp_indices = memcmp(coo->non_zero_indices().data<int64_t>(),
                           indices_data.data(),
                           indices_data.size() * sizeof(int64_t));
  ASSERT_EQ(cmp_indices, 0);
  int cmp_elements = memcmp(coo->non_zero_elements().data<float>(),
                            non_zero_data.data(),
                            non_zero_data.size() * sizeof(float));
  ASSERT_EQ(cmp_elements, 0);
66 67

  // 1. test sparse_csr_to_coo
68 69 70 71 72 73 74 75 76 77 78 79
  auto dense_dims = phi::make_ddim({3, 3});
  phi::DenseTensorMeta crows_meta(
      phi::DataType::INT64, {dense_dims[0] + 1}, phi::DataLayout::NCHW);
  phi::DenseTensorMeta cols_meta(
      phi::DataType::INT64, {non_zero_num}, phi::DataLayout::NCHW);
  phi::DenseTensorMeta values_meta(
      phi::DataType::FLOAT32, {non_zero_num}, phi::DataLayout::NCHW);

  phi::CPUPlace place;
  phi::DenseTensor crows(alloc.get(), crows_meta);
  phi::DenseTensor cols(alloc.get(), cols_meta);
  phi::DenseTensor values(alloc.get(), values_meta);
80 81 82 83 84 85 86 87 88 89
  memcpy(crows.mutable_data<int64_t>(place),
         crows_data.data(),
         crows_data.size() * sizeof(int64_t));
  memcpy(cols.mutable_data<int64_t>(place),
         cols_data.data(),
         cols_data.size() * sizeof(int64_t));
  memcpy(values.mutable_data<float>(place),
         non_zero_data.data(),
         non_zero_data.size() * sizeof(float));
  auto csr =
90
      std::make_shared<phi::SparseCsrTensor>(crows, cols, values, dense_dims);
91 92
  paddle::experimental::Tensor csr_x(csr);
  auto out2 = paddle::experimental::sparse::to_sparse_coo(
93
      csr_x, phi::Backend::CPU, sparse_dim);
94

95
  auto coo2 = std::dynamic_pointer_cast<phi::SparseCooTensor>(out.impl());
96 97 98 99 100 101 102 103 104
  ASSERT_EQ(coo2->nnz(), non_zero_num);
  int cmp_indices2 = memcmp(coo2->non_zero_indices().data<int64_t>(),
                            indices_data.data(),
                            indices_data.size() * sizeof(int64_t));
  ASSERT_EQ(cmp_indices2, 0);
  int cmp_elements2 = memcmp(coo2->non_zero_elements().data<float>(),
                             non_zero_data.data(),
                             non_zero_data.size() * sizeof(float));
  ASSERT_EQ(cmp_elements2, 0);
105
}
106 107 108 109 110

TEST(API, to_sparse_csr) {
  const auto alloc = std::make_shared<paddle::experimental::DefaultAllocator>(
      paddle::platform::CPUPlace());

111
  auto dense_x = std::make_shared<phi::DenseTensor>(
112
      alloc.get(),
113 114 115
      phi::DenseTensorMeta(phi::DataType::FLOAT32,
                           phi::make_ddim({3, 3}),
                           phi::DataLayout::NCHW));
116

117
  phi::CPUPlace cpu;
118 119 120 121 122 123 124 125 126 127 128
  const int64_t sparse_dim = 2;
  auto* dense_x_data = dense_x->mutable_data<float>(cpu);
  float dense_data[3][3] = {{0.0, 1.0, 0.0}, {2.0, 0.0, 3.0}, {3.2, 0.0, 0.0}};
  std::vector<float> non_zero_data = {1.0, 2.0, 3.0, 3.2};
  std::vector<int64_t> indices_data = {0, 1, 1, 2, 1, 0, 2, 0};
  std::vector<int64_t> cols_data = {1, 0, 2, 0};
  std::vector<int64_t> crows_data = {0, 1, 3, 4};
  const int64_t non_zero_num = 4;

  std::copy(&dense_data[0][0], &dense_data[0][0] + 9, dense_x_data);

129
  phi::CPUContext dev_ctx_cpu;
130 131 132

  // 1. test dense_to_sparse_csr
  paddle::experimental::Tensor x(dense_x);
133 134 135
  auto out = paddle::experimental::sparse::to_sparse_csr(x, phi::Backend::CPU);
  auto csr = std::dynamic_pointer_cast<phi::SparseCsrTensor>(out.impl());
  auto check = [&](const phi::SparseCsrTensor& csr) {
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
    ASSERT_EQ(csr.non_zero_cols().numel(), non_zero_num);
    int cmp_crows = memcmp(csr.non_zero_crows().data<int64_t>(),
                           crows_data.data(),
                           crows_data.size() * sizeof(int64_t));
    ASSERT_EQ(cmp_crows, 0);
    int cmp_cols = memcmp(csr.non_zero_cols().data<int64_t>(),
                          cols_data.data(),
                          cols_data.size() * sizeof(int64_t));
    ASSERT_EQ(cmp_cols, 0);
    int cmp_elements = memcmp(csr.non_zero_elements().data<float>(),
                              non_zero_data.data(),
                              non_zero_data.size() * sizeof(float));
    ASSERT_EQ(cmp_elements, 0);
  };
  check(*csr);

  // 1. test sparse_coo_to_csr
153 154 155 156 157 158 159 160 161
  auto dense_dims = phi::make_ddim({3, 3});
  phi::DenseTensorMeta indices_meta(
      phi::DataType::INT64, {sparse_dim, non_zero_num}, phi::DataLayout::NCHW);
  phi::DenseTensorMeta values_meta(
      phi::DataType::FLOAT32, {non_zero_num}, phi::DataLayout::NCHW);

  phi::CPUPlace place;
  phi::DenseTensor indices(alloc.get(), indices_meta);
  phi::DenseTensor values(alloc.get(), values_meta);
162 163 164 165 166 167 168
  memcpy(indices.mutable_data<int64_t>(place),
         indices_data.data(),
         indices_data.size() * sizeof(int64_t));
  memcpy(values.mutable_data<float>(place),
         non_zero_data.data(),
         non_zero_data.size() * sizeof(float));
  auto coo =
169
      std::make_shared<phi::SparseCooTensor>(indices, values, dense_dims);
170 171
  paddle::experimental::Tensor coo_x(coo);
  auto out2 =
172
      paddle::experimental::sparse::to_sparse_csr(coo_x, phi::Backend::CPU);
173

174
  auto csr2 = std::dynamic_pointer_cast<phi::SparseCsrTensor>(out.impl());
175 176
  check(*csr2);
}
Z
zhangkaihuo 已提交
177 178 179 180 181

TEST(API, to_dense) {
  const auto alloc = std::make_shared<paddle::experimental::DefaultAllocator>(
      paddle::platform::CPUPlace());

182
  phi::CPUPlace cpu;
Z
zhangkaihuo 已提交
183 184 185 186 187 188 189
  const int64_t sparse_dim = 2;
  float dense_data[3][3] = {{0.0, 1.0, 0.0}, {2.0, 0.0, 3.0}, {3.2, 0.0, 0.0}};
  std::vector<float> non_zero_data = {1.0, 2.0, 3.0, 3.2};
  std::vector<int64_t> indices_data = {0, 1, 1, 2, 1, 0, 2, 0};
  std::vector<int64_t> cols_data = {1, 0, 2, 0};
  std::vector<int64_t> crows_data = {0, 1, 3, 4};
  const int64_t non_zero_num = 4;
190
  auto dense_dims = phi::make_ddim({3, 3});
Z
zhangkaihuo 已提交
191

192
  phi::CPUContext dev_ctx_cpu;
Z
zhangkaihuo 已提交
193 194

  // 1. test sparse_coo_to_dense
195 196 197 198 199 200 201 202
  phi::DenseTensorMeta indices_meta(
      phi::DataType::INT64, {sparse_dim, non_zero_num}, phi::DataLayout::NCHW);
  phi::DenseTensorMeta values_meta(
      phi::DataType::FLOAT32, {non_zero_num}, phi::DataLayout::NCHW);

  phi::CPUPlace place;
  phi::DenseTensor indices(alloc.get(), indices_meta);
  phi::DenseTensor values(alloc.get(), values_meta);
Z
zhangkaihuo 已提交
203 204 205 206 207 208 209
  memcpy(indices.mutable_data<int64_t>(place),
         indices_data.data(),
         indices_data.size() * sizeof(int64_t));
  memcpy(values.mutable_data<float>(place),
         non_zero_data.data(),
         non_zero_data.size() * sizeof(float));
  auto coo =
210
      std::make_shared<phi::SparseCooTensor>(indices, values, dense_dims);
Z
zhangkaihuo 已提交
211 212

  paddle::experimental::Tensor coo_x(coo);
213 214
  auto out = paddle::experimental::sparse::to_dense(coo_x, phi::Backend::CPU);
  auto dense_out = std::dynamic_pointer_cast<phi::DenseTensor>(out.impl());
Z
zhangkaihuo 已提交
215 216 217 218 219
  int cmp1 =
      memcmp(dense_out->data<float>(), &dense_data[0][0], 9 * sizeof(float));
  ASSERT_EQ(cmp1, 0);

  // 1. test sparse_csr_to_dense
220 221 222 223 224 225
  phi::DenseTensorMeta crows_meta(
      phi::DataType::INT64, {dense_dims[0] + 1}, phi::DataLayout::NCHW);
  phi::DenseTensorMeta cols_meta(
      phi::DataType::INT64, {non_zero_num}, phi::DataLayout::NCHW);
  phi::DenseTensor crows(alloc.get(), crows_meta);
  phi::DenseTensor cols(alloc.get(), cols_meta);
Z
zhangkaihuo 已提交
226 227 228 229 230 231 232 233 234 235
  memcpy(crows.mutable_data<int64_t>(place),
         crows_data.data(),
         crows_data.size() * sizeof(int64_t));
  memcpy(cols.mutable_data<int64_t>(place),
         cols_data.data(),
         cols_data.size() * sizeof(int64_t));
  memcpy(values.mutable_data<float>(place),
         non_zero_data.data(),
         non_zero_data.size() * sizeof(float));
  auto csr =
236
      std::make_shared<phi::SparseCsrTensor>(crows, cols, values, dense_dims);
Z
zhangkaihuo 已提交
237
  paddle::experimental::Tensor csr_x(csr);
238
  auto out2 = paddle::experimental::sparse::to_dense(csr_x, phi::Backend::CPU);
Z
zhangkaihuo 已提交
239

240
  auto dense_out2 = std::dynamic_pointer_cast<phi::DenseTensor>(out.impl());
Z
zhangkaihuo 已提交
241 242 243 244
  int cmp2 =
      memcmp(dense_out2->data<float>(), &dense_data[0][0], 9 * sizeof(float));
  ASSERT_EQ(cmp2, 0);
}