python_api.md 8.0 KB
Newer Older
Y
Yu Yang 已提交
1 2
# Design Doc: Python API

Y
Update  
Yi Wang 已提交
3
Due to the refactorization of the PaddlePaddle core, we need Python classes to construct corresponding protobuf messages that describe a DL program.
Y
Yu Yang 已提交
4

Y
Update  
Yi Wang 已提交
5
| Python classes | Protobuf messages |
Y
Yu Yang 已提交
6
| --- | --- |
7
| Program | ProgramDesc |
Y
Yu Yang 已提交
8 9 10 11
| Block | BlockDesc |
| Operator | OpDesc |
| Variable | VarDesc |

Y
Update  
Yi Wang 已提交
12 13 14 15
Please be aware that these Python classes need to maintain some construction-time information, which are not part of the protobuf messages.

## Core Concepts

16 17
### Program

18
A `ProgramDesc` describes a [DL program](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/program.md), which is composed of an array of `BlockDesc`s.  The `BlockDesc`s in a `ProgramDesc` can have a tree-like hierarchical structure. However, the `ProgramDesc` onlys stores a flattened array of `BlockDesc`s. A `BlockDesc` refers to its parent block by its index in the array.  For example, operators in the step block of an RNN operator need to be able to access variables in its ancestor blocks.
Y
Update  
Yi Wang 已提交
19

20
Whenever we create a block, we need to set its parent block to the current block, hence the Python class `Program` needs to maintain a data member `current_block`.
21 22 23 24

```python
class Program(objects):
    def __init__(self):
Y
Yu Yang 已提交
25
        self.desc = core.NewProgram() # a C++ ProgramDesc pointer.
26
        self.blocks = vector<Block>()
Y
Update  
Yi Wang 已提交
27 28
        self.blocks.append(Block(self, -1)) # the global block
        self.current_block = 0          # initialized to the global block
29

Y
Update  
Yi Wang 已提交
30 31
    def global_block():
        return self.blocks[0]
32 33

    def current_block():
Y
Update  
Yi Wang 已提交
34
        return self.get_block(self.current_block)
35

Y
Update  
Yi Wang 已提交
36 37
    def rollback():
        self.current_block = self.current_block().parent_idx
38 39 40

    def create_block():
        new_block_idx = len(self.block)
Y
Update  
Yi Wang 已提交
41 42 43
        self.blocks.append(Block(self, self.current_block))
        self.current_block = new_block_idx
        return current_block()
44 45
```

Y
Update  
Yi Wang 已提交
46
`Program` is an accessor to the protobuf message `ProgramDesc`, which is created in C++ space, because the InferShape function is in C++, which manipulates `VarDesc` messages, which are in turn members of `BlockDesc`, which is a member of `ProgramDesc`.
Y
Yu Yang 已提交
47

Y
Update  
Yi Wang 已提交
48
`Program` creates the first block as the global block in its constructor.  All parameters and their initializer operators are in the global block.
Y
Yu Yang 已提交
49

Y
Update  
Yi Wang 已提交
50
### Block
Y
Yu Yang 已提交
51

Y
Update  
Yi Wang 已提交
52
A [Block](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/block.md) includes
Y
Yu Yang 已提交
53

Y
Update  
Yi Wang 已提交
54 55
1. a map from variable names to an instance of the Python `Variable` class, and
1. a list of `Operator` instances.
Y
Yu Yang 已提交
56 57 58

```python
class Block(objects):
Y
Update  
Yi Wang 已提交
59
    def __init__(self, program, parent_idx):
Y
Yu Yang 已提交
60
        self.desc = core.NewBlock(program.desc)
Y
Update  
Yi Wang 已提交
61
        self.program = program
Y
Yu Yang 已提交
62 63
        self.vars = map<string, Variable>()
        self.ops = vector<Operator>()
64
        self.parent_idx = parent_idx
Y
Update  
Yi Wang 已提交
65

Y
Yu Yang 已提交
66
    def create_var(self, ...):
Y
Update  
Yi Wang 已提交
67 68 69 70 71 72 73 74 75 76
        return Variable(self, ...)

    def _create_global_var(self, ...):
        program.global_block().create_var(...)

    def create_parameter(self, name, ...):
        # Parameter is a subclass of variable. See Parameter section for details.
        self.vars[name] = Parameter(self._create_global_var(...), ...)
        return self.vars[name]

Y
Yu Yang 已提交
77
    def append_operator(self, ...):
Y
Update  
Yi Wang 已提交
78
        self.ops.append(Operator(self, ...))
Y
Yu Yang 已提交
79

Y
Update  
Yi Wang 已提交
80 81 82
    def prepend_operator(self, ...): # Parameter's ctor prepands initialize operators.
       self.ops.prepend(Operator(self, ...))
```
Y
Yu Yang 已提交
83

84
`create_parameter` is necessary because parameters are global variables, defined in the global block, but can be created in some sub-blocks. For example, an FC layer in the step block of an RNN operator.
Y
Yu Yang 已提交
85

86
`prepend_operator` is necessary because the constructor of `Parameter` needs to create the initialize (or load) operator of the parameter, and would like to put it in the *preamble* of the global block.
Y
Yu Yang 已提交
87 88 89

### Operator

90
The `Operator` class fills in the `OpDesc` message and calls the C++ function `InferShape` to infer the output shapes from the input shapes.
Y
Yu Yang 已提交
91 92 93

```python
class Operator(object):
Y
Update  
Yi Wang 已提交
94 95 96 97 98 99 100
    def __init__(self,
                 block,  # Block
                 type,   # string
                 inputs, # dict<string, Variable>
                 outputs,# dict<stirng, Variable>
                 attrs   # dict<string, Any>
                 ):
Y
Yu Yang 已提交
101 102
        self.desc = core.NewOpDesc(block.desc, type, inputs, outputs, attrs)
        core.infer_shape(self.desc, inputs, outputs)
Y
Yu Yang 已提交
103 104

    def type(self):
Y
Yu Yang 已提交
105
        return self.desc.type()
Y
Yu Yang 已提交
106 107
```

108
`Operator` creates the `OpDesc` message in C++ space, so that it can call the `InferShape` function, which is in C++.
Y
Yu Yang 已提交
109

Y
Yu Yang 已提交
110 111
### Variable

Y
Update  
Yi Wang 已提交
112
Operators take Variables as its inputs and outputs.
Y
Yu Yang 已提交
113 114 115

```python
class Variable(object):
Y
Update  
Yi Wang 已提交
116 117 118 119 120 121 122
    def __init__(self,
                 block=None,      # Block
                 name=None,       # string
                 shape,           # tuple
                 dtype="float32", # string
                 lod_level=None   # int
                 ):
Y
Yu Yang 已提交
123
        if name is None:
F
fengjiayi 已提交
124
            name = unique_name_generator()
Y
Yu Yang 已提交
125 126
        self.name = name
        self.block = block
Y
Yu Yang 已提交
127
        self.desc = core.NewVarDesc(block.desc, name, shape, lod_level)
Y
Update  
Yi Wang 已提交
128
        self.writer = None
Y
Yu Yang 已提交
129 130
```

131
Please be aware of `self.writer`, that tracks operator who creates the variable.  It possible that there are more than one operators who write a variable, but in Python space, each write to a variable is represented by a Variable class.  This is guaranteed by the fact that **`core.NewVarDesc` must NOT create a new `VarDesc` message if its name already exists in the specified block**.
F
fengjiayi 已提交
132

Y
Yu Yang 已提交
133 134
### Parameter

Y
Update  
Yi Wang 已提交
135
A parameter is a global variable with an initializer (or load) operator.
Y
Yu Yang 已提交
136

Y
Update  
Yu Yang 已提交
137 138
```python
class Parameter(Variable):
Y
Update  
Yi Wang 已提交
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
    def __init__(self,
                 block=None,      # Block
                 name=None,       # string
                 shape,           # tuple
                 dtype="float32", # string
                 lod_level=None   # int
                 trainable,       # bool
                 initialize_op_attrs,
                 optimize_op_attrs):
        super(Parameter, self).__init__(block, name, shape, dtype, lod_level)
        self.trainable = trainable
        self.optimize_op_attrs = optimize_op_attrs
        block.prepend(Operator(block,  # Block
                               initialize_op_attrs['type'],   # string
                               None,   # no inputs
                               self,   # output is the parameter
                               initialize_op_attrs)
Y
Yu Yang 已提交
156 157
```

158
When users create a parameter, they can call
F
fengjiayi 已提交
159

Y
Update  
Yi Wang 已提交
160 161 162 163 164 165 166 167 168 169
```python
program.create_parameter(
  ...,
  init_attr={
    type: "uniform_random",
    min: -1.0,
    max: 1.0,
  })
)
```
F
fengjiayi 已提交
170

Y
Update  
Yi Wang 已提交
171 172 173 174 175 176 177 178
In above example, `init_attr.type` names an initialize operator.  It can also name the load operator

```python
init_attr={
 type: "load",
 filename: "something.numpy",
}
```
Y
Yu Yang 已提交
179

Y
Update  
Yi Wang 已提交
180 181 182
`optimize_op_attrs` is not in the `VarDesc` message, but kept in the Python instance, as it will be used in the Python space when creating the optimize operator's `OpDesc`, and will be in the `OpDesc` message.

## Layer Functions
F
fengjiayi 已提交
183

Y
Update  
Yi Wang 已提交
184
A layer is a Python function that creates some operators and variables.  Layers simplify the work of application programmers.
F
fengjiayi 已提交
185 186 187 188

### Data Layer

```python
Y
Update  
Yi Wang 已提交
189 190 191 192 193
def data_layer(name, type, column_name):
    block = the_current_program.glolal_block()
    var = block.create_global_var(
            name=name,
            shape=[None] + type.dims(),
F
fengjiayi 已提交
194
            dtype=type.dtype)
Y
Update  
Yi Wang 已提交
195 196 197 198 199 200 201
    block.prepend_operator(block,
                           type="Feed",
                           inputs = None,
                           outputs = [var],
                           {column_name: column_name})
    return var
```
F
fengjiayi 已提交
202

Y
Update  
Yi Wang 已提交
203
The input to the feed operator is a special variable in the global scope, which is the output of [Python readers](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/reader/README.md).
F
fengjiayi 已提交
204 205 206 207

### FC Layer

```python
208 209
def fc_layer(input, size, ...):
    block = program.current_block()
F
fengjiayi 已提交
210 211
    w = block.create_parameter(...)
    b = block.create_parameter(...)
Y
Yu Yang 已提交
212
    out = block.create_var()
Y
Update  
Yi Wang 已提交
213 214
    op = block.append_operator("FC", X=input, W=w, b=b, out=out)
    out.writer = op
F
fengjiayi 已提交
215 216
    return out
```
Q
Qiao Longfei 已提交
217 218 219 220

## Optimizer

[Optimizer Design Doc](./optimizer.md)