quant_utils.cc 8.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/framework/ir/xpu/quant_utils.h"
#include <vector>
#include "paddle/fluid/platform/device_context.h"
#include "paddle/phi/core/enforce.h"
19 20 21
#include "paddle/phi/kernels/assign_kernel.h"
#include "paddle/phi/kernels/cast_kernel.h"
#include "paddle/phi/kernels/transpose_kernel.h"
22 23 24 25 26

namespace paddle {
namespace framework {
namespace ir {

27 28 29 30 31 32 33 34 35 36 37
void Assign(const phi::DenseTensor& in, phi::DenseTensor* out) {
  auto* cpu_ctx = static_cast<phi::CPUContext*>(
      platform::DeviceContextPool::Instance().Get(phi::CPUPlace()));
  out->Resize(in.dims());
  out->set_type(in.dtype());
  out->set_layout(in.layout());
  phi::AssignKernel(*cpu_ctx, in, out);
}

void Transpose2D(phi::DenseTensor* in, phi::DenseTensor* out) {
  auto in_dims = in->dims();
38 39 40 41 42 43
  PADDLE_ENFORCE_EQ(
      in_dims.size(),
      2,
      platform::errors::InvalidArgument(
          "In dims rank should be 2, but received in dims size is [%d].",
          in_dims.size()));
44 45 46 47 48 49 50 51

  phi::DenseTensor trans_tensor;
  phi::DenseTensor* out_ptr = out == nullptr ? &trans_tensor : out;
  out_ptr->Resize({in_dims[1], in_dims[0]});
  out_ptr->set_type(in->type());
  out_ptr->set_layout(in->layout());

  auto* cpu_ctx = static_cast<phi::CPUContext*>(
52 53
      platform::DeviceContextPool::Instance().Get(phi::CPUPlace()));
  std::vector<int> axis{1, 0};
54 55
  switch (in->dtype()) {
    case phi::DataType::FLOAT16:
56
      phi::TransposeKernel<phi::dtype::float16>(*cpu_ctx, *in, axis, out_ptr);
57 58 59 60 61 62 63 64 65 66 67 68 69 70
      break;
    case phi::DataType::FLOAT32:
      phi::TransposeKernel<float>(*cpu_ctx, *in, axis, out_ptr);
      break;
    default:
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Only support fp16 and fp32, but received dtype is %s.",
          phi::DataTypeToString(in->dtype())));
      break;
  }

  if (out == nullptr) {
    Assign(*out_ptr, in);
  }
71 72
}

73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
void CastToInt32(phi::DenseTensor* in, phi::DenseTensor* out) {
  auto* cpu_ctx = static_cast<phi::CPUContext*>(
      platform::DeviceContextPool::Instance().Get(phi::CPUPlace()));

  phi::DenseTensor int32_tensor;
  phi::DenseTensor* out_ptr = out == nullptr ? &int32_tensor : out;
  out_ptr->Resize(in->dims());
  out_ptr->set_type(phi::DataType::INT32);
  out_ptr->set_layout(in->layout());

  switch (in->dtype()) {
    case phi::DataType::INT64:
      phi::CastKernel<int64_t>(*cpu_ctx, *in, phi::DataType::INT32, out_ptr);
      break;
    case phi::DataType::INT32:
      if (out == nullptr) {
        return;
      } else {
        phi::AssignKernel(*cpu_ctx, *in, out_ptr);
      }
      break;
    default:
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Only support int64 and int32, but received dtype is %s.",
          phi::DataTypeToString(in->dtype())));
      break;
  }

  if (out == nullptr) {
    Assign(*out_ptr, in);
  }
}

106 107 108 109 110 111 112 113 114 115 116 117
void CastToFp32(phi::DenseTensor* in, phi::DenseTensor* out) {
  auto* cpu_ctx = static_cast<phi::CPUContext*>(
      platform::DeviceContextPool::Instance().Get(phi::CPUPlace()));

  phi::DenseTensor fp32_tensor;
  phi::DenseTensor* out_ptr = out == nullptr ? &fp32_tensor : out;
  out_ptr->Resize(in->dims());
  out_ptr->set_type(phi::DataType::FLOAT32);
  out_ptr->set_layout(in->layout());

  switch (in->dtype()) {
    case phi::DataType::FLOAT16:
118 119
      phi::CastKernel<phi::dtype::float16>(
          *cpu_ctx, *in, phi::DataType::FLOAT32, out_ptr);
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
      break;
    case phi::DataType::FLOAT32:
      if (out == nullptr) {
        return;
      } else {
        phi::AssignKernel(*cpu_ctx, *in, out_ptr);
      }
      break;
    default:
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Only support fp16 and fp32, but received dtype is %s.",
          phi::DataTypeToString(in->dtype())));
      break;
  }

  if (out == nullptr) {
    Assign(*out_ptr, in);
  }
}
139

140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
static float FindMaxAbs(const float* data, int len) {
  float max_f = 0.0f;
  for (int i = 0; i < len; ++i) {
    float max = std::abs(data[i]);
    if (max > max_f) {
      max_f = max;
    }
  }
  return max_f;
}

static float IEEECompliance0(float f) {
  uint32_t* ptr = reinterpret_cast<uint32_t*>(&f);
  uint32_t sign = (*ptr) & 0x80000000;
  uint32_t uf = 0;
  // nan -> inf
  if (std::isnan(f)) {
    uf = (sign | 0x7F800000);
    float* ptr = reinterpret_cast<float*>(&uf);
    return *ptr;
  } else if (std::isnormal(f) || (std::isinf(f)) || (f == 0)) {
    return f;
  } else {
    // denormal -> +-0
    uf = 0x0;
    float* ptr = reinterpret_cast<float*>(&uf);
    return *ptr;
  }
}

static inline long RoundHalfToEven(const float src) {  // NOLINT
  long ret = llround(src);                             // NOLINT
  if (fabs(fabs(round(src) - src) - 0.5) > 0) {
    return ret;
  } else {
    if (abs(ret) % 2 == 0) {
      return ret;
    } else {
      return ret + (ret > 0 ? -1 : 1);
    }
  }
}

template <typename T, int RMAX>
static T Fp32ToIntx(const float f, float max) {
  max = IEEECompliance0(max);
  float input = IEEECompliance0(f);
  // +0 and -0 -> +0
  if (input == 0) {
    input = 0.0f;
  }

  float tmp = RMAX / max;
  if (std::isinf(tmp)) {
    uint32_t* ptr = reinterpret_cast<uint32_t*>(&input);
    if ((*ptr) >> 31 & 1) {
      return T(-RMAX);
    } else {
      return T(RMAX);
    }
  }

  tmp = input * tmp;
  if (std::isnan(tmp)) {
    return T(RMAX);
  }

  tmp = IEEECompliance0(tmp);
  // early check to avoid INF or big value get into convertor func.
  if (tmp > RMAX) {
    return T(RMAX);
  }
  if (tmp < -RMAX) {
    return T(-RMAX);
  }
  T ret = (T)RoundHalfToEven(tmp);
  if (ret > RMAX) {
    ret = T(RMAX);
  }
  if (ret < -RMAX) {
    ret = T(-RMAX);
  }
  return ret;
}

template <typename T>
static void QuantFP32ToIntX(const float* src_ptr,
                            T* dst_ptr,
                            float max_val,
                            int numel) {
  LOG(FATAL) << "Not support.";
}

template <>
void QuantFP32ToIntX<int16_t>(const float* src_ptr,
                              int16_t* dst_ptr,
                              float max_val,
                              int numel) {
  for (int i = 0; i < numel; i++) {
    dst_ptr[i] = Fp32ToIntx<int16_t, 32767>(src_ptr[i], max_val);
  }
}

Z
zhupengyang 已提交
243 244 245 246 247 248 249 250 251 252
template <>
void QuantFP32ToIntX<int8_t>(const float* src_ptr,
                             int8_t* dst_ptr,
                             float max_val,
                             int numel) {
  for (int i = 0; i < numel; i++) {
    dst_ptr[i] = Fp32ToIntx<int8_t, 127>(src_ptr[i], max_val);
  }
}

253
template <typename T>
254 255 256
void PrepareWeight(phi::DenseTensor* weight,
                   phi::DenseTensor* weight_max,
                   bool transpose) {
257 258 259 260
  // Convert fp16 to fp32
  phi::DenseTensor weight_fp32;
  CastToFp32(weight, &weight_fp32);

261 262
  // Transpose
  if (transpose) {
263
    Transpose2D(&weight_fp32);
264
  }
265

266
  // Find max
S
shentanyue 已提交
267 268 269 270 271 272 273 274 275 276
  paddle::platform::DeviceContextPool& pool =
      paddle::platform::DeviceContextPool::Instance();
  const auto& dev_ctxs = pool.device_contexts();
  auto place = phi::XPUPlace();  // xpu:0
  for (auto it = dev_ctxs.begin(); it != dev_ctxs.end(); it++) {
    if (it->first.GetType() == phi::AllocationType::XPU) {  // maybe xpu:1
      place = it->first;
    }
  }
  phi::XPUContext* xpu_ctx = static_cast<phi::XPUContext*>(pool.Get(place));
277
  int max_ptr_size = xpu_ctx->x_context()->max_ptr_size();
278 279
  int size = weight_fp32.numel();
  auto* weight_data = weight_fp32.data<float>();
280 281
  float max_val = FindMaxAbs(weight_data, size);
  std::vector<float> max_vec(max_ptr_size, max_val);
282
  weight_max->set_type(phi::DataType::FLOAT32);
283
  weight_max->Resize({max_ptr_size});
284
  auto* cpu_ctx = static_cast<phi::CPUContext*>(
285
      platform::DeviceContextPool::Instance().Get(phi::CPUPlace()));
286
  memcpy(cpu_ctx->Alloc<float>(weight_max),
287 288
         max_vec.data(),
         max_ptr_size * sizeof(float));
289

290
  // Quant
291
  weight->set_type(phi::CppTypeToDataType<T>::Type());
292 293
  weight->Resize(weight_fp32.dims());
  QuantFP32ToIntX(weight_data, cpu_ctx->Alloc<T>(weight), max_val, size);
294 295
}

296 297 298
template void PrepareWeight<int16_t>(phi::DenseTensor* weight,
                                     phi::DenseTensor* weight_max,
                                     bool transpose);
Z
zhupengyang 已提交
299 300 301
template void PrepareWeight<int8_t>(phi::DenseTensor* weight,
                                    phi::DenseTensor* weight_max,
                                    bool transpose);
302 303 304 305

}  // namespace ir
}  // namespace framework
}  // namespace paddle