masked_select_grad_kernel.cu 2.3 KB
Newer Older
H
hong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <thrust/device_ptr.h>
#include <thrust/device_vector.h>
#include <thrust/reverse.h>
#include <thrust/scan.h>

20
#include "paddle/phi/kernels/funcs/select_impl.cu.h"
21
#include "paddle/phi/kernels/masked_select_grad_kernel.h"
H
hong 已提交
22

23 24
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
25
namespace phi {
H
hong 已提交
26

27 28 29
template <typename MT, typename InT, typename OutT>
struct MaskedSelectGradFunctor {
  HOSTDEVICE MaskedSelectGradFunctor() {}
H
hong 已提交
30

31 32 33 34 35 36 37 38 39 40 41
  HOSTDEVICE inline void operator()(OutT* out,
                                    const MT* mask,
                                    const InT* value,
                                    int num) {
    int read_fix = 0;
    for (int idx = 0; idx < num; idx++) {
      if (mask[idx]) {
        out[idx] = value[read_fix++];
      } else {
        out[idx] = 0;
      }
H
hong 已提交
42 43
    }
  }
44
};
H
hong 已提交
45 46 47 48 49 50 51 52

template <typename T, typename Context>
void MaskedSelectGradKernel(const Context& dev_ctx,
                            const DenseTensor& out_grad,
                            const DenseTensor& x,
                            const DenseTensor& mask,
                            DenseTensor* x_grad) {
  auto mask_size = mask.numel();
53 54 55 56 57
  auto* out_data = x_grad->mutable_data<T>(dev_ctx.GetPlace());
  if (mask_size <= 0) return;
  using Functor = MaskedSelectGradFunctor<bool, T, T>;
  phi::funcs::SelectKernel<bool, T, T, 2, Functor>(
      dev_ctx, mask, out_grad, x_grad, Functor());
H
hong 已提交
58 59
}

60
}  // namespace phi
H
hong 已提交
61

62
PD_REGISTER_KERNEL(masked_select_grad,
H
hong 已提交
63 64
                   GPU,
                   ALL_LAYOUT,
65
                   phi::MaskedSelectGradKernel,
H
hong 已提交
66 67 68 69
                   float,
                   double,
                   int,
                   int64_t) {}