test_recurrent_machine_generation.cpp 5.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <fstream>

#include <paddle/trainer/Trainer.h>
Y
Yu Yang 已提交
18
#include <paddle/utils/PythonUtil.h>
19 20 21 22 23 24 25

#include <gtest/gtest.h>

using namespace paddle;  // NOLINT
using namespace std;     // NOLINT

static const string& CONFIG_FILE = "trainer/tests/sample_trainer_rnn_gen.conf";
26 27
static const string& NEST_CONFIG_FILE =
    "trainer/tests/sample_trainer_nest_rnn_gen.conf";
28 29 30 31 32
static const string& OUTPUT_DIR = "trainer/tests/dump_text.test";
static string modelDir = "trainer/tests/rnn_gen_test_model_dir/t1";  // NOLINT
static string expectFile =                                           // NOLINT
    "trainer/tests/rnn_gen_test_model_dir/r1.test";                  // NOLINT

33
DECLARE_string(config_args);
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53

vector<float> readRetFile(const string& fname) {
  ifstream inFile(fname);
  float ret;
  vector<float> nums;
  while (inFile >> ret) {
    nums.push_back(ret);
  }
  return nums;
}

void checkOutput(const string& expRetFile) {
  vector<float> rets = readRetFile(OUTPUT_DIR);
  vector<float> expRets = readRetFile(expRetFile);
  EXPECT_EQ(rets.size(), expRets.size());
  for (size_t i = 0; i < rets.size(); i++) {
    EXPECT_FLOAT_EQ(rets[i], expRets[i]);
  }
}

54 55 56 57
void prepareInArgs(vector<Argument>& inArgs,
                   const size_t batchSize,
                   bool useGpu,
                   bool hasSubseq) {
58 59 60 61
  inArgs.clear();
  // sentence id
  Argument sentId;
  sentId.value = nullptr;
62 63 64 65 66 67 68 69 70
  if (hasSubseq) {
    // as there is only one sequence, there is only one label.
    IVector::resizeOrCreate(sentId.ids, 1, useGpu);
    sentId.ids->setElement(0, 0);
  } else {
    // as there is batchSize word, there is batchSize label.
    IVector::resizeOrCreate(sentId.ids, batchSize, useGpu);
    for (size_t i = 0; i < batchSize; ++i) sentId.ids->setElement(i, i);
  }
71 72 73 74 75 76
  inArgs.emplace_back(sentId);

  // a dummy layer to decide batch size
  Argument dummyInput;
  dummyInput.value = Matrix::create(batchSize, 2, false, useGpu);
  dummyInput.value->randomizeUniform();
77 78 79 80 81 82 83 84 85 86 87 88
  if (hasSubseq) {
    // generate one sequence with batchSize subsequence,
    // and each subsequence has only one word.
    dummyInput.sequenceStartPositions = ICpuGpuVector::create(2, false);
    int* buf = dummyInput.sequenceStartPositions->getMutableData(false);
    dummyInput.subSequenceStartPositions =
        ICpuGpuVector::create(batchSize + 1, false);
    int* subBuf = dummyInput.subSequenceStartPositions->getMutableData(false);
    buf[0] = 0;
    buf[1] = batchSize;
    for (size_t i = 0; i < batchSize + 1; i++) subBuf[i] = i;
  }
89 90 91
  inArgs.emplace_back(dummyInput);
}

92 93 94
void testGeneration(const string& configFile,
                    bool useGpu,
                    bool hasSubseq,
95
                    const string& expRetFile) {
96
  FLAGS_use_gpu = useGpu;
97
  auto config = std::make_shared<TrainerConfigHelper>(configFile);
98 99 100 101 102
  unique_ptr<GradientMachine> gradientMachine(GradientMachine::create(*config));
  gradientMachine->loadParameters(modelDir);
  vector<Argument> inArgs(2);

  const size_t batchSize = 15;
103
  prepareInArgs(inArgs, batchSize, useGpu, hasSubseq);
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
  vector<Argument> outArgs;
  unique_ptr<Evaluator> testEvaluator(gradientMachine->makeEvaluator());
  testEvaluator->start();
  gradientMachine->forward(inArgs, &outArgs, PASS_TEST);
  gradientMachine->eval(testEvaluator.get());
  testEvaluator->finish();
  checkOutput(expRetFile);
}

#ifndef PADDLE_TYPE_DOUBLE

TEST(RecurrentGradientMachine, test_generation) {
#ifdef PADDLE_ONLY_CPU
  const auto useGpuConfs = {false};
#else
  const auto useGpuConfs = {true, false};
#endif
121 122 123 124
  auto testGen = [&](const string& configFile,
                     bool hasSubseq,
                     const string& expRetFile,
                     bool beam_search) {
125 126
    FLAGS_config_args = beam_search ? "beam_search=1" : "beam_search=0";
    for (auto useGpu : useGpuConfs) {
127 128
      LOG(INFO) << configFile << " useGpu=" << useGpu
                << " beam_search=" << beam_search;
129 130 131 132 133 134 135 136
      testGeneration(configFile, useGpu, hasSubseq, expRetFile);
    }
  };
  testGen(CONFIG_FILE, false, expectFile + ".nobeam", false);  // no beam search
  testGen(CONFIG_FILE, false, expectFile + ".beam", true);     // beam search
  // In hierarchical RNN, beam search and one way search are only in inner-RNN,
  // outer-RNN will concat the generated inner-results (first for beam search)
  // from inner-RNN. Thus, they have the same outer-results.
137 138 139
  testGen(NEST_CONFIG_FILE,
          true,
          expectFile + ".nest",
140 141
          false);  // no beam search
  testGen(NEST_CONFIG_FILE, true, expectFile + ".nest", true);  // beam search
142 143 144 145 146 147 148 149 150 151 152 153 154 155
}
#endif

int main(int argc, char** argv) {
  initMain(argc, argv);
  initPython(argc, argv);
  CHECK(argc == 1 || argc == 3);
  if (argc == 3) {
    modelDir = argv[1];
    expectFile = argv[2];
  }
  testing::InitGoogleTest(&argc, argv);
  return RUN_ALL_TESTS();
}
反馈
建议
客服 返回
顶部