grid_sample_kernel.cu 15.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15 16
#include "paddle/phi/kernels/grid_sample_kernel.h"

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
#include "paddle/phi/backends/gpu/gpu_info.h"
#include "paddle/phi/backends/gpu/gpu_launch_config.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/gpu/grid_sample_utils.h"

namespace phi {

template <typename T>
static __forceinline__ __device__ T Unnormalize(T coord,
                                                int size,
                                                bool align_corners) {
  if (align_corners) {
    return ((coord + 1.f) / 2) * (size - 1);
  } else {
    return ((coord + 1.f) * size - 1) / 2;
  }
}

template <typename T>
static __forceinline__ __device__ T ClipIndexes(T in, int max_value) {
  return min(static_cast<T>(max_value), max(in, static_cast<T>(0)));
}

template <typename T>
static __forceinline__ __device__ T ReflectIndexes(T in,
                                                   int twice_low,
                                                   int twice_high) {
  if (twice_low == twice_high) {
    return static_cast<T>(0);
  }
  T min = static_cast<T>(twice_low) / 2;
  T span = static_cast<T>(twice_high - twice_low) / 2;
  in = fabs(in - min);
  T extra = fmod(in, span);
  int flips = static_cast<int>(floor(in / span));
  if (flips % 2 == 0) {
    return extra + min;
  } else {
    return span - extra + min;
  }
}

template <typename T>
static __forceinline__ __device__ T ComputePositions(T coord,
                                                     int size,
                                                     PaddingMode padding_mode,
                                                     bool align_corners) {
  coord = Unnormalize<T>(coord, size, align_corners);
  if (padding_mode == PaddingMode::border) {
    coord = ClipIndexes(coord, size - 1);
  } else if (padding_mode == PaddingMode::reflect) {
    if (align_corners) {
      coord = ReflectIndexes(coord, 0, 2 * (size - 1));
    } else {
      coord = ReflectIndexes(coord, -1, 2 * size - 1);
    }
    coord = ClipIndexes(coord, size - 1);
  }
  return coord;
}

template <typename T>
__global__ void GridSampleCudaKernel(const int nthreads,
                                     int n,
                                     int out_c,
                                     int out_h,
                                     int out_w,
                                     int in_h,
                                     int in_w,
                                     const T* input,
                                     const T* grid,
                                     T* output,
                                     const Mode mode,
                                     const PaddingMode padding_mode,
                                     bool align_corners) {
  int inp_sN = out_c * in_h * in_w;

  int inp_sC = in_h * in_w;
  int inp_sH = in_w;
  int inp_sW = 1;
  int grid_sN = out_h * out_w * 2;
  int grid_sH = out_w * 2;
  int grid_sW = 2;
  int grid_sCoor = 1;
  int out_sN = out_c * out_h * out_w;
  int out_sC = out_h * out_w;
  int out_sH = out_w;
  int out_sW = 1;
  CUDA_KERNEL_LOOP(index, nthreads) {
    const int w = index % out_w;
    const int h = (index / out_w) % out_h;
    const int n = index / (out_h * out_w);
    const int grid_offset = n * grid_sN + h * grid_sH + w * grid_sW;

    T ix = grid[grid_offset];
    T iy = grid[grid_offset + grid_sCoor];

    ix = ComputePositions(ix, in_w, padding_mode, align_corners);
    iy = ComputePositions(iy, in_h, padding_mode, align_corners);
    if (mode == Mode::bilinear) {
      int ix_nw = static_cast<int>(floor(ix));
      int iy_nw = static_cast<int>(floor(iy));
      int ix_ne = ix_nw + 1;
      int iy_ne = iy_nw;
      int ix_sw = ix_nw;
      int iy_sw = iy_nw + 1;
      int ix_se = ix_nw + 1;
      int iy_se = iy_nw + 1;

      T nw = (ix_se - ix) * (iy_se - iy);
      T ne = (ix - ix_sw) * (iy_sw - iy);
      T sw = (ix_ne - ix) * (iy - iy_ne);
      T se = (ix - ix_nw) * (iy - iy_nw);

      auto inp_offset_NC = n * inp_sN;

      auto out_ptr_NCHW = output + n * out_sN + h * out_sH + w * out_sW;
      for (int c = 0; c < out_c;
           ++c, inp_offset_NC += inp_sC, out_ptr_NCHW += out_sC) {
        *out_ptr_NCHW = static_cast<T>(0);
        if (InBounds(iy_nw, ix_nw, in_h, in_w)) {
          *out_ptr_NCHW +=
              input[inp_offset_NC + iy_nw * inp_sH + ix_nw * inp_sW] * nw;
        }
        if (InBounds(iy_ne, ix_ne, in_h, in_w)) {
          *out_ptr_NCHW +=
              input[inp_offset_NC + iy_ne * inp_sH + ix_ne * inp_sW] * ne;
        }
        if (InBounds(iy_sw, ix_sw, in_h, in_w)) {
          *out_ptr_NCHW +=
              input[inp_offset_NC + iy_sw * inp_sH + ix_sw * inp_sW] * sw;
        }
        if (InBounds(iy_se, ix_se, in_h, in_w)) {
          *out_ptr_NCHW +=
              input[inp_offset_NC + iy_se * inp_sH + ix_se * inp_sW] * se;
        }
      }
    } else if (mode == Mode::nearest) {
      int ix_nearest = static_cast<int>(std::nearbyint(ix));
      int iy_nearest = static_cast<int>(std::nearbyint(iy));
      auto inp_offset_NC = n * inp_sN;
      auto out_ptr_NCHW = output + n * out_sN + h * out_sH + w * out_sW;
      for (int c = 0; c < out_c;
           ++c, inp_offset_NC += inp_sC, out_ptr_NCHW += out_sC) {
        if (InBounds(iy_nearest, ix_nearest, in_h, in_w)) {
          *out_ptr_NCHW =
              input[inp_offset_NC + iy_nearest * inp_sH + ix_nearest * inp_sW];
        } else {
          *out_ptr_NCHW = static_cast<T>(0);
        }
      }
    }
  }
}

172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
template <typename T>
__global__ void GridSample3DCudaKernel(const int nthreads,
                                       int out_c,
                                       int out_d,
                                       int out_h,
                                       int out_w,
                                       int in_d,
                                       int in_h,
                                       int in_w,
                                       const T* input,
                                       const T* grid,
                                       T* output,
                                       const Mode interpolation_mode,
                                       const PaddingMode padding_mode,
                                       bool align_corners) {
  int inp_sW = 1;
  int inp_sH = in_w;
  int inp_sD = in_h * in_w;
  int inp_sC = in_d * inp_sD;
  int inp_sN = out_c * inp_sC;

  int grid_sCoor = 1;
  int grid_sW = 3;
  int grid_sH = out_w * grid_sW;
  int grid_sD = out_h * grid_sH;
  int grid_sN = out_d * grid_sD;

  int out_sW = 1;
  int out_sH = out_w;
  int out_sD = out_h * out_w;
  int out_sC = out_d * out_sD;
  int out_sN = out_c * out_sC;

  CUDA_KERNEL_LOOP_TYPE(index, nthreads, int) {
    const int w = index % out_w;
    const int h = (index / out_w) % out_h;
    const int d = (index / (out_h * out_w)) % out_d;
    const int n = index / (out_d * out_h * out_w);
    const int grid_offset =
        n * grid_sN + d * grid_sD + h * grid_sH + w * grid_sW;
    // get the corresponding input x, y, z co-ordinates from grid
    T ix = grid[grid_offset];
    T iy = grid[grid_offset + grid_sCoor];
    T iz = grid[grid_offset + 2 * grid_sCoor];
    ix = ComputePositions(ix, in_w, padding_mode, align_corners);
    iy = ComputePositions(iy, in_h, padding_mode, align_corners);
    iz = ComputePositions(iz, in_d, padding_mode, align_corners);
    if (interpolation_mode == Mode::bilinear) {
      // get corner pixel values from (x, y, z)
      // for 4d, we used north-east-south-west
      // for 5d, we add top-bottom
      int ix_tnw = static_cast<int>(std::floor(ix));
      int iy_tnw = static_cast<int>(std::floor(iy));
      int iz_tnw = static_cast<int>(std::floor(iz));

      int ix_tne = ix_tnw + 1;
      int iy_tne = iy_tnw;
      int iz_tne = iz_tnw;

      int ix_tsw = ix_tnw;
      int iy_tsw = iy_tnw + 1;
      int iz_tsw = iz_tnw;

      int ix_tse = ix_tnw + 1;
      int iy_tse = iy_tnw + 1;
      int iz_tse = iz_tnw;

      int ix_bnw = ix_tnw;
      int iy_bnw = iy_tnw;
      int iz_bnw = iz_tnw + 1;

      int ix_bne = ix_tnw + 1;
      int iy_bne = iy_tnw;
      int iz_bne = iz_tnw + 1;

      int ix_bsw = ix_tnw;
      int iy_bsw = iy_tnw + 1;
      int iz_bsw = iz_tnw + 1;

      int ix_bse = ix_tnw + 1;
      int iy_bse = iy_tnw + 1;
      int iz_bse = iz_tnw + 1;

      // get surfaces to each neighbor:
      T tnw = (ix_bse - ix) * (iy_bse - iy) * (iz_bse - iz);
      T tne = (ix - ix_bsw) * (iy_bsw - iy) * (iz_bsw - iz);
      T tsw = (ix_bne - ix) * (iy - iy_bne) * (iz_bne - iz);
      T tse = (ix - ix_bnw) * (iy - iy_bnw) * (iz_bnw - iz);
      T bnw = (ix_tse - ix) * (iy_tse - iy) * (iz - iz_tse);
      T bne = (ix - ix_tsw) * (iy_tsw - iy) * (iz - iz_tsw);
      T bsw = (ix_tne - ix) * (iy - iy_tne) * (iz - iz_tne);
      T bse = (ix - ix_tnw) * (iy - iy_tnw) * (iz - iz_tnw);

      auto inp_ptr_NC = input + n * inp_sN;
      auto out_ptr_NCDHW =
          output + n * out_sN + d * out_sD + h * out_sH + w * out_sW;
      for (int c = 0; c < out_c;
           ++c, inp_ptr_NC += inp_sC, out_ptr_NCDHW += out_sC) {
        *out_ptr_NCDHW = static_cast<T>(0);
        if (InBounds3D(iz_tnw, iy_tnw, ix_tnw, in_d, in_h, in_w)) {
          *out_ptr_NCDHW +=
              inp_ptr_NC[iz_tnw * inp_sD + iy_tnw * inp_sH + ix_tnw * inp_sW] *
              tnw;
        }
        if (InBounds3D(iz_tne, iy_tne, ix_tne, in_d, in_h, in_w)) {
          *out_ptr_NCDHW +=
              inp_ptr_NC[iz_tne * inp_sD + iy_tne * inp_sH + ix_tne * inp_sW] *
              tne;
        }
        if (InBounds3D(iz_tsw, iy_tsw, ix_tsw, in_d, in_h, in_w)) {
          *out_ptr_NCDHW +=
              inp_ptr_NC[iz_tsw * inp_sD + iy_tsw * inp_sH + ix_tsw * inp_sW] *
              tsw;
        }
        if (InBounds3D(iz_tse, iy_tse, ix_tse, in_d, in_h, in_w)) {
          *out_ptr_NCDHW +=
              inp_ptr_NC[iz_tse * inp_sD + iy_tse * inp_sH + ix_tse * inp_sW] *
              tse;
        }
        if (InBounds3D(iz_bnw, iy_bnw, ix_bnw, in_d, in_h, in_w)) {
          *out_ptr_NCDHW +=
              inp_ptr_NC[iz_bnw * inp_sD + iy_bnw * inp_sH + ix_bnw * inp_sW] *
              bnw;
        }
        if (InBounds3D(iz_bne, iy_bne, ix_bne, in_d, in_h, in_w)) {
          *out_ptr_NCDHW +=
              inp_ptr_NC[iz_bne * inp_sD + iy_bne * inp_sH + ix_bne * inp_sW] *
              bne;
        }
        if (InBounds3D(iz_bsw, iy_bsw, ix_bsw, in_d, in_h, in_w)) {
          *out_ptr_NCDHW +=
              inp_ptr_NC[iz_bsw * inp_sD + iy_bsw * inp_sH + ix_bsw * inp_sW] *
              bsw;
        }
        if (InBounds3D(iz_bse, iy_bse, ix_bse, in_d, in_h, in_w)) {
          *out_ptr_NCDHW +=
              inp_ptr_NC[iz_bse * inp_sD + iy_bse * inp_sH + ix_bse * inp_sW] *
              bse;
        }
      }
    } else if (interpolation_mode == Mode::nearest) {
      int ix_nearest = static_cast<int>(std::round(ix));
      int iy_nearest = static_cast<int>(std::round(iy));
      int iz_nearest = static_cast<int>(std::round(iz));

      // assign nearest neighor pixel value to output pixel
      auto inp_ptr_NC = input + n * inp_sN;
      auto out_ptr_NCDHW =
          output + n * out_sN + d * out_sD + h * out_sH + w * out_sW;
      for (int c = 0; c < out_c;
           ++c, inp_ptr_NC += inp_sC, out_ptr_NCDHW += out_sC) {
        if (InBounds3D(iz_nearest, iy_nearest, ix_nearest, in_d, in_h, in_w)) {
          *out_ptr_NCDHW =
              inp_ptr_NC[iz_nearest * inp_sD + iy_nearest * inp_sH +
                         ix_nearest * inp_sW];
        } else {
          *out_ptr_NCDHW = static_cast<T>(0);
        }
      }
    }
  }
}

335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
template <typename T, typename Context>
void GridSampleKernel(const Context& dev_ctx,
                      const DenseTensor& x,
                      const DenseTensor& grid,
                      const std::string& mode,
                      const std::string& padding_mode,
                      bool align_corners,
                      DenseTensor* out) {
  PaddingMode enum_padding_mode;
  Mode enum_mode;
  if (padding_mode == "border") {
    enum_padding_mode = PaddingMode::border;
  } else if (padding_mode == "reflection") {
    enum_padding_mode = PaddingMode::reflect;
  } else {
    enum_padding_mode = PaddingMode::zeros;
  }

  if (mode == "nearest") {
    enum_mode = Mode::nearest;
  } else {
    enum_mode = Mode::bilinear;
  }

359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
  if (x.dims().size() == 4) {
    const int n = grid.dims()[0];
    const int out_h = grid.dims()[1];
    const int out_w = grid.dims()[2];
    const int c = x.dims()[1];
    const int in_h = x.dims()[2];
    const int in_w = x.dims()[3];
    VLOG(3) << "n: " << n << "; c: " << c << "; out_h: " << out_h
            << "; out_w: " << out_w;

    auto* output_data = dev_ctx.template Alloc<T>(out);
    VLOG(3) << "out dims: " << out->dims()[0] << "; " << out->dims()[1] << "; "
            << out->dims()[2] << "; " << out->dims()[3];

    int count = static_cast<int>(n * out_h * out_w);
    auto cu_stream = dev_ctx.stream();
    backends::gpu::GpuLaunchConfig config =
        backends::gpu::GetGpuLaunchConfig1D(dev_ctx, count);
    GridSampleCudaKernel<T>
        <<<config.block_per_grid, config.thread_per_block, 0, cu_stream>>>(
            count,
            n,
            c,
            out_h,
            out_w,
            in_h,
            in_w,
            x.data<T>(),
            grid.data<T>(),
            output_data,
            enum_mode,
            enum_padding_mode,
            align_corners);
  } else {
    const int n = grid.dims()[0];
    const int out_d = grid.dims()[1];
    const int out_h = grid.dims()[2];
    const int out_w = grid.dims()[3];
    const int c = x.dims()[1];
    const int in_d = x.dims()[2];
    const int in_h = x.dims()[3];
    const int in_w = x.dims()[4];

    VLOG(3) << "n: " << n << "; c: " << c << "; out_d: " << out_d
            << "; out_h: " << out_h << "; out_w: " << out_w;

    auto* output_data = dev_ctx.template Alloc<T>(out);
    VLOG(3) << "out dims: " << out->dims()[0] << "; " << out->dims()[1] << "; "
            << out->dims()[2] << "; " << out->dims()[3] << "; "
            << out->dims()[4];

    int count = static_cast<int>(n * out_d * out_h * out_w);
    auto cu_stream = dev_ctx.stream();
    backends::gpu::GpuLaunchConfig config =
        backends::gpu::GetGpuLaunchConfig1D(dev_ctx, count);
    GridSample3DCudaKernel<T>
        <<<config.block_per_grid, config.thread_per_block, 0, cu_stream>>>(
            count,
            c,
            out_d,
            out_h,
            out_w,
            in_d,
            in_h,
            in_w,
            x.data<T>(),
            grid.data<T>(),
            output_data,
            enum_mode,
            enum_padding_mode,
            align_corners);
  }
431 432 433 434 435 436
}

}  // namespace phi

PD_REGISTER_KERNEL(
    grid_sample, GPU, ALL_LAYOUT, phi::GridSampleKernel, float, double) {}