test_distribution_categorical.py 17.2 KB
Newer Older
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9 10 11 12 13 14 15 16 17
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

import numpy as np
18 19
from test_distribution import DistributionNumpy

20 21
import paddle
from paddle import fluid
22
from paddle.distribution import Categorical, Distribution, Normal, Uniform
23

24 25
np.random.seed(2022)

26 27 28 29 30 31 32 33 34 35

class CategoricalNumpy(DistributionNumpy):
    def __init__(self, logits):
        self.logits = np.array(logits).astype('float32')

    def entropy(self):
        logits = self.logits - np.max(self.logits, axis=-1, keepdims=True)
        e_logits = np.exp(logits)
        z = np.sum(e_logits, axis=-1, keepdims=True)
        prob = e_logits / z
36
        return -1.0 * np.sum(prob * (logits - np.log(z)), axis=-1)
37 38 39 40

    def kl_divergence(self, other):
        logits = self.logits - np.max(self.logits, axis=-1, keepdims=True)
        other_logits = other.logits - np.max(
41 42
            other.logits, axis=-1, keepdims=True
        )
43 44 45 46 47
        e_logits = np.exp(logits)
        other_e_logits = np.exp(other_logits)
        z = np.sum(e_logits, axis=-1, keepdims=True)
        other_z = np.sum(other_e_logits, axis=-1, keepdims=True)
        prob = e_logits / z
48 49 50 51 52
        return np.sum(
            prob * (logits - np.log(z) - other_logits + np.log(other_z)),
            axis=-1,
            keepdims=True,
        )
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80


class CategoricalTest(unittest.TestCase):
    def setUp(self, use_gpu=False, batch_size=3, dims=5):
        self.use_gpu = use_gpu
        if not use_gpu:
            self.place = fluid.CPUPlace()
            self.gpu_id = -1
        else:
            self.place = fluid.CUDAPlace(0)
            self.gpu_id = 0

        self.batch_size = batch_size
        self.dims = dims
        self.init_numpy_data(batch_size, dims)

        paddle.disable_static(self.place)
        self.init_dynamic_data(batch_size, dims)

        paddle.enable_static()
        self.test_program = fluid.Program()
        self.executor = fluid.Executor(self.place)
        self.init_static_data(batch_size, dims)

    def init_numpy_data(self, batch_size, dims):
        # input logtis is 2-D Tensor
        # value used in probs and log_prob method is 1-D Tensor
        self.logits_np = np.random.rand(batch_size, dims).astype('float32')
81 82 83
        self.other_logits_np = np.random.rand(batch_size, dims).astype(
            'float32'
        )
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
        self.value_np = np.array([2, 1, 3]).astype('int64')

        self.logits_shape = [batch_size, dims]
        # dist_shape = logits_shape[:-1], it represents the number of
        #  different distributions.
        self.dist_shape = [batch_size]
        # sample shape represents the number of samples
        self.sample_shape = [2, 4]
        # value used in probs and log_prob method
        # If value is 1-D and logits is 2-D or higher dimension, value will be
        #  broadcasted to have the same number of distributions with logits.
        # If value is 2-D or higher dimentsion, it should have the same number
        #  of distributions with logtis. ``value[:-1] = logits[:-1]
        self.value_shape = [3]

    def init_dynamic_data(self, batch_size, dims):
        self.logits = paddle.to_tensor(self.logits_np)
        self.other_logits = paddle.to_tensor(self.other_logits_np)
        self.value = paddle.to_tensor(self.value_np)

    def init_static_data(self, batch_size, dims):
        with fluid.program_guard(self.test_program):
106
            self.logits_static = paddle.static.data(
107 108
                name='logits', shape=self.logits_shape, dtype='float32'
            )
109
            self.other_logits_static = paddle.static.data(
110 111
                name='other_logits', shape=self.logits_shape, dtype='float32'
            )
112
            self.value_static = paddle.static.data(
113 114
                name='value', shape=self.value_shape, dtype='int64'
            )
115 116 117 118 119 120 121 122 123 124 125 126

    def get_numpy_selected_probs(self, probability):
        np_probs = np.zeros(self.dist_shape + self.value_shape)
        for i in range(self.batch_size):
            for j in range(3):
                np_probs[i][j] = probability[i][self.value_np[j]]
        return np_probs

    def compare_with_numpy(self, fetch_list, tolerance=1e-6):
        sample, entropy, kl, probs, log_prob = fetch_list
        log_tolerance = 1e-4

127 128 129
        np.testing.assert_equal(
            sample.shape, self.sample_shape + self.dist_shape
        )
130 131 132 133 134 135

        np_categorical = CategoricalNumpy(self.logits_np)
        np_other_categorical = CategoricalNumpy(self.other_logits_np)
        np_entropy = np_categorical.entropy()
        np_kl = np_categorical.kl_divergence(np_other_categorical)

136 137 138 139 140 141
        np.testing.assert_allclose(
            entropy, np_entropy, rtol=log_tolerance, atol=log_tolerance
        )
        np.testing.assert_allclose(
            kl, np_kl, rtol=log_tolerance, atol=log_tolerance
        )
142 143 144 145 146 147

        sum_dist = np.sum(self.logits_np, axis=-1, keepdims=True)
        probability = self.logits_np / sum_dist
        np_probs = self.get_numpy_selected_probs(probability)
        np_log_prob = np.log(np_probs)

148 149 150 151 152 153
        np.testing.assert_allclose(
            probs, np_probs, rtol=tolerance, atol=tolerance
        )
        np.testing.assert_allclose(
            log_prob, np_log_prob, rtol=tolerance, atol=tolerance
        )
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185

    def test_categorical_distribution_dygraph(self, tolerance=1e-6):
        paddle.disable_static(self.place)
        categorical = Categorical(self.logits)
        other_categorical = Categorical(self.other_logits)

        sample = categorical.sample(self.sample_shape).numpy()
        entropy = categorical.entropy().numpy()
        kl = categorical.kl_divergence(other_categorical).numpy()
        probs = categorical.probs(self.value).numpy()
        log_prob = categorical.log_prob(self.value).numpy()

        fetch_list = [sample, entropy, kl, probs, log_prob]
        self.compare_with_numpy(fetch_list)

    def test_categorical_distribution_static(self, tolerance=1e-6):
        paddle.enable_static()
        with fluid.program_guard(self.test_program):
            categorical = Categorical(self.logits_static)
            other_categorical = Categorical(self.other_logits_static)

            sample = categorical.sample(self.sample_shape)
            entropy = categorical.entropy()
            kl = categorical.kl_divergence(other_categorical)
            probs = categorical.probs(self.value_static)
            log_prob = categorical.log_prob(self.value_static)

            fetch_list = [sample, entropy, kl, probs, log_prob]

        feed_vars = {
            'logits': self.logits_np,
            'other_logits': self.other_logits_np,
186
            'value': self.value_np,
187 188 189
        }

        self.executor.run(fluid.default_startup_program())
190 191 192
        fetch_list = self.executor.run(
            program=self.test_program, feed=feed_vars, fetch_list=fetch_list
        )
193 194 195 196 197 198 199 200 201

        self.compare_with_numpy(fetch_list)


class CategoricalTest2(CategoricalTest):
    def init_numpy_data(self, batch_size, dims):
        # input logtis is 2-D Tensor with dtype Float64
        # value used in probs and log_prob method is 1-D Tensor
        self.logits_np = np.random.rand(batch_size, dims).astype('float64')
202 203 204
        self.other_logits_np = np.random.rand(batch_size, dims).astype(
            'float64'
        )
205 206 207 208 209 210 211 212 213
        self.value_np = np.array([2, 1, 3]).astype('int64')

        self.logits_shape = [batch_size, dims]
        self.dist_shape = [batch_size]
        self.sample_shape = [2, 4]
        self.value_shape = [3]

    def init_static_data(self, batch_size, dims):
        with fluid.program_guard(self.test_program):
214
            self.logits_static = paddle.static.data(
215 216
                name='logits', shape=self.logits_shape, dtype='float64'
            )
217
            self.other_logits_static = paddle.static.data(
218 219
                name='other_logits', shape=self.logits_shape, dtype='float64'
            )
220
            self.value_static = paddle.static.data(
221 222
                name='value', shape=self.value_shape, dtype='int64'
            )
223 224 225 226 227 228 229 230 231 232 233 234 235 236


class CategoricalTest3(CategoricalTest):
    def init_dynamic_data(self, batch_size, dims):
        # input logtis is 2-D numpy.ndarray with dtype Float32
        # value used in probs and log_prob method is 1-D Tensor
        self.logits = self.logits_np
        self.other_logits = self.other_logits_np
        self.value = paddle.to_tensor(self.value_np)

    def init_static_data(self, batch_size, dims):
        with fluid.program_guard(self.test_program):
            self.logits_static = self.logits_np
            self.other_logits_static = self.other_logits_np
237
            self.value_static = paddle.static.data(
238 239
                name='value', shape=self.value_shape, dtype='int64'
            )
240 241 242 243 244 245 246


class CategoricalTest4(CategoricalTest):
    def init_numpy_data(self, batch_size, dims):
        # input logtis is 2-D numpy.ndarray with dtype Float64
        # value used in probs and log_prob method is 1-D Tensor
        self.logits_np = np.random.rand(batch_size, dims).astype('float64')
247 248 249
        self.other_logits_np = np.random.rand(batch_size, dims).astype(
            'float64'
        )
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
        self.value_np = np.array([2, 1, 3]).astype('int64')

        self.logits_shape = [batch_size, dims]
        self.dist_shape = [batch_size]
        self.sample_shape = [2, 4]
        self.value_shape = [3]

    def init_dynamic_data(self, batch_size, dims):
        self.logits = self.logits_np
        self.other_logits = self.other_logits_np
        self.value = paddle.to_tensor(self.value_np)

    def init_static_data(self, batch_size, dims):
        with fluid.program_guard(self.test_program):
            self.logits_static = self.logits_np
            self.other_logits_static = self.other_logits_np
266
            self.value_static = paddle.static.data(
267 268
                name='value', shape=self.value_shape, dtype='int64'
            )
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346


# test shape of logits and value used in probs and log_prob method
class CategoricalTest5(CategoricalTest):
    def init_numpy_data(self, batch_size, dims):
        # input logtis is 1-D Tensor
        # value used in probs and log_prob method is 1-D Tensor
        self.logits_np = np.random.rand(dims).astype('float32')
        self.other_logits_np = np.random.rand(dims).astype('float32')
        self.value_np = np.array([2, 1, 3]).astype('int64')

        self.logits_shape = [dims]
        self.dist_shape = []
        self.sample_shape = [2, 4]
        self.value_shape = [3]

    def get_numpy_selected_probs(self, probability):
        np_probs = np.zeros(self.value_shape)
        for i in range(3):
            np_probs[i] = probability[self.value_np[i]]
        return np_probs


class CategoricalTest6(CategoricalTest):
    def init_numpy_data(self, batch_size, dims):
        # input logtis is 2-D Tensor
        # value used in probs and log_prob method has the same number of batches with input
        self.logits_np = np.random.rand(3, 5).astype('float32')
        self.other_logits_np = np.random.rand(3, 5).astype('float32')
        self.value_np = np.array([[2, 1], [0, 3], [2, 3]]).astype('int64')

        self.logits_shape = [3, 5]
        self.dist_shape = [3]
        self.sample_shape = [2, 4]
        self.value_shape = [3, 2]

    def get_numpy_selected_probs(self, probability):
        np_probs = np.zeros(self.value_shape)
        for i in range(3):
            for j in range(2):
                np_probs[i][j] = probability[i][self.value_np[i][j]]
        return np_probs


class CategoricalTest7(CategoricalTest):
    def init_numpy_data(self, batch_size, dims):
        # input logtis is 3-D Tensor
        # value used in probs and log_prob method has the same number of distribuions with input
        self.logits_np = np.random.rand(3, 2, 5).astype('float32')
        self.other_logits_np = np.random.rand(3, 2, 5).astype('float32')
        self.value_np = np.array([2, 1, 3]).astype('int64')

        self.logits_shape = [3, 2, 5]
        self.dist_shape = [3, 2]
        self.sample_shape = [2, 4]
        self.value_shape = [3]

    def get_numpy_selected_probs(self, probability):
        np_probs = np.zeros(self.dist_shape + self.value_shape)
        for i in range(3):
            for j in range(2):
                for k in range(3):
                    np_probs[i][j][k] = probability[i][j][self.value_np[k]]
        return np_probs


class CategoricalTest8(CategoricalTest):
    def init_dynamic_data(self, batch_size, dims):
        # input logtis is 2-D list
        # value used in probs and log_prob method is 1-D Tensor
        self.logits = self.logits_np.tolist()
        self.other_logits = self.other_logits_np.tolist()
        self.value = paddle.to_tensor(self.value_np)

    def init_static_data(self, batch_size, dims):
        with fluid.program_guard(self.test_program):
            self.logits_static = self.logits_np.tolist()
            self.other_logits_static = self.other_logits_np.tolist()
347
            self.value_static = paddle.static.data(
348 349
                name='value', shape=self.value_shape, dtype='int64'
            )
350 351 352 353 354 355 356 357 358 359 360 361 362 363


class CategoricalTest9(CategoricalTest):
    def init_dynamic_data(self, batch_size, dims):
        # input logtis is 2-D tuple
        # value used in probs and log_prob method is 1-D Tensor
        self.logits = tuple(self.logits_np.tolist())
        self.other_logits = tuple(self.other_logits_np.tolist())
        self.value = paddle.to_tensor(self.value_np)

    def init_static_data(self, batch_size, dims):
        with fluid.program_guard(self.test_program):
            self.logits_static = tuple(self.logits_np.tolist())
            self.other_logits_static = tuple(self.other_logits_np.tolist())
364
            self.value_static = paddle.static.data(
365 366
                name='value', shape=self.value_shape, dtype='int64'
            )
367 368 369 370 371 372 373 374 375 376


class DistributionTestError(unittest.TestCase):
    def test_distribution_error(self):
        distribution = Distribution()

        self.assertRaises(NotImplementedError, distribution.sample)
        self.assertRaises(NotImplementedError, distribution.entropy)

        normal = Normal(0.0, 1.0)
377 378 379
        self.assertRaises(
            NotImplementedError, distribution.kl_divergence, normal
        )
380 381

        value_npdata = np.array([0.8], dtype="float32")
382
        value_tensor = paddle.tensor.create_tensor(dtype="float32")
383 384 385
        self.assertRaises(
            NotImplementedError, distribution.log_prob, value_tensor
        )
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
        self.assertRaises(NotImplementedError, distribution.probs, value_tensor)

    def test_normal_error(self):
        paddle.enable_static()
        normal = Normal(0.0, 1.0)

        value = [1.0, 2.0]
        # type of value must be variable
        self.assertRaises(TypeError, normal.log_prob, value)

        value = [1.0, 2.0]
        # type of value must be variable
        self.assertRaises(TypeError, normal.probs, value)

        shape = 1.0
        # type of shape must be list
        self.assertRaises(TypeError, normal.sample, shape)

        seed = 1.0
        # type of seed must be int
        self.assertRaises(TypeError, normal.sample, [2, 3], seed)

        normal_other = Uniform(1.0, 2.0)
        # type of other must be an instance of Normal
        self.assertRaises(TypeError, normal.kl_divergence, normal_other)

    def test_uniform_error(self):
        paddle.enable_static()
        uniform = Uniform(0.0, 1.0)

        value = [1.0, 2.0]
        # type of value must be variable
        self.assertRaises(TypeError, uniform.log_prob, value)

        value = [1.0, 2.0]
        # type of value must be variable
        self.assertRaises(TypeError, uniform.probs, value)

        shape = 1.0
        # type of shape must be list
        self.assertRaises(TypeError, uniform.sample, shape)

        seed = 1.0
        # type of seed must be int
        self.assertRaises(TypeError, uniform.sample, [2, 3], seed)

    def test_categorical_error(self):
        paddle.enable_static()

        categorical = Categorical([0.4, 0.6])

        value = [1, 0]
        # type of value must be variable
        self.assertRaises(AttributeError, categorical.log_prob, value)

        value = [1, 0]
        # type of value must be variable
        self.assertRaises(AttributeError, categorical.probs, value)

        shape = 1.0
        # type of shape must be list
        self.assertRaises(TypeError, categorical.sample, shape)

        categorical_other = Uniform(1.0, 2.0)
        # type of other must be an instance of Categorical
451 452 453
        self.assertRaises(
            TypeError, categorical.kl_divergence, categorical_other
        )
454 455 456 457 458 459 460 461 462 463 464

        def test_shape_not_match_error():
            # shape of value must match shape of logits
            # value_shape[:-1] == logits_shape[:-1]
            paddle.disable_static()
            logits = paddle.rand([3, 5])
            cat = Categorical(logits)
            value = paddle.to_tensor([[2, 1, 3], [3, 2, 1]], dtype='int64')
            cat.log_prob(value)

        self.assertRaises(ValueError, test_shape_not_match_error)
465 466 467 468


if __name__ == '__main__':
    unittest.main()