amp_o2_pass.py 4.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import random
import re
import unittest

import numpy as np
from get_gpt_model import FakeDataset, generate_model

import paddle
from paddle.distributed.fleet import auto
from paddle.framework import core

paddle.enable_static()


def get_cuda_version():
    result = os.popen("nvcc --version").read()
    regex = r'release (\S+),'
    match = re.search(regex, result)
    if match:
        num = str(match.group(1))
        integer, decimal = num.split('.')
        return int(integer) * 1000 + int(float(decimal) * 10)
    else:
        return -1


def apply_pass(use_amp=False, amp_dtype="bfloat16"):
    strategy = auto.Strategy()
    strategy.auto_mode = "semi"
    strategy.reinit = True

    if use_amp:
        amp = strategy.amp
        amp.enable = True
        amp.dtype = amp_dtype
        amp.level = "o2"
        amp.custom_black_list = [
            'c_softmax_with_cross_entropy',
            'elementwise_div',
            'reduce_sum',
        ]

    return strategy


def reset_prog():
    paddle.fluid.framework.switch_main_program(paddle.static.Program())
    paddle.fluid.framework.switch_startup_program(paddle.static.Program())


class TestShardingStage2WithNewEXE(unittest.TestCase):
    def setUp(self):
        self.batch_size = 2
        self.batch_num = 10
        self.clip_norm = 0.2
        self.dataset = FakeDataset(self.batch_size * self.batch_num)

    def init(self, engine):
        paddle.seed(2022)
        np.random.seed(2022)
        random.seed(2022)
        place = paddle.fluid.CUDAPlace(paddle.distributed.ParallelEnv().dev_id)
        engine._executor = paddle.static.Executor(place)

    def get_engine(self, use_amp=False, amp_dtype="bfloat16"):
        reset_prog()

        strategy = apply_pass(use_amp, amp_dtype)
        clip = paddle.nn.ClipGradByGlobalNorm(self.clip_norm)
        opt = paddle.optimizer.AdamW(learning_rate=0.00001, grad_clip=clip)
        model, loss = generate_model("mp")
        engine = auto.Engine(model, loss, opt, strategy=strategy)
        self.init(engine)
        return engine

    def check_bf16(self, program):
        num_bf16 = 0
        num_fp16 = 0
        num_fp32 = 0

        for p in program.all_parameters():
            if p.dtype == core.VarDesc.VarType.FP32:
                num_fp32 += 1
            if p.dtype == core.VarDesc.VarType.FP16:
                num_fp16 += 1
            if p.dtype == core.VarDesc.VarType.BF16:
                num_bf16 += 1

        self.assertEqual(num_bf16, 26)
        self.assertEqual(num_fp16, 0)
        self.assertEqual(num_fp32, 10)

    def test_param_grad_fuse_overlap(self):
        # std
        mp_engine = self.get_engine(use_amp=False)
        mp_history = mp_engine.fit(
            self.dataset,
            3,
            epochs=1,
            steps_per_epoch=self.batch_num,
            log_freq=1,
            batch_size=self.batch_size,
        )
        loss0 = mp_history.history['loss'][0]

        # bf16
        mp_bf16_engine = self.get_engine(use_amp=True)
        if not paddle.is_compiled_with_cuda() or get_cuda_version() < 11000:
            return

        mp_bf16_history = mp_bf16_engine.fit(
            self.dataset,
            3,
            epochs=1,
            steps_per_epoch=self.batch_num,
            log_freq=1,
            batch_size=self.batch_size,
        )
        loss1 = mp_bf16_history.history['loss'][0]
        np.testing.assert_allclose(loss0, loss1, atol=1e-3, rtol=1e-2)

        self.check_bf16(mp_bf16_engine.main_program)


if __name__ == "__main__":
    unittest.main()