cum_op.h 3.7 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
E
emailweixu 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
P
peizhilin 已提交
16 17

#include <array>
Y
Yi Wang 已提交
18 19 20
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
E
emailweixu 已提交
21 22 23 24 25 26 27 28 29 30

namespace paddle {
namespace operators {

template <typename DeviceContext, typename Functor>
class CumKernel : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  using T = typename Functor::ELEMENT_TYPE;

  void Compute(const framework::ExecutionContext& context) const override {
31 32
    auto& X = GET_DATA_SAFELY(context.Input<framework::Tensor>("X"), "Input",
                              "X", "Cum");
E
emailweixu 已提交
33

34 35
    auto& Out = GET_DATA_SAFELY(context.Output<framework::Tensor>("Out"),
                                "Output", "Out", "Cum");
E
emailweixu 已提交
36 37 38 39 40 41 42 43 44
    int axis = context.Attr<int>("axis");
    bool exclusive = context.Attr<bool>("exclusive");
    bool reverse = context.Attr<bool>("reverse");
    auto x_dims = X.dims();
    if (axis == -1) {
      axis = x_dims.size() - 1;
    }
    PADDLE_ENFORCE_LT(
        axis, x_dims.size(),
45 46 47
        platform::errors::InvalidArgument("axis(%d) should be less than the "
                                          "dimension(%d) of the input tensor.",
                                          axis, x_dims.size()));
48
    Out.template mutable_data<T>(context.GetPlace());
E
emailweixu 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112

    int pre = 1;
    int post = 1;
    int mid = x_dims[axis];
    for (int i = 0; i < axis; ++i) {
      pre *= x_dims[i];
    }
    for (int i = axis + 1; i < x_dims.size(); ++i) {
      post *= x_dims[i];
    }

    auto x = framework::EigenVector<T>::Flatten(X);
    auto out = framework::EigenVector<T>::Flatten(Out);
    auto* place =
        context.template device_context<DeviceContext>().eigen_device();

    using IndexT = Eigen::DenseIndex;
    if (pre == 1) {
      if (post == 1) {
        ComputeImp(*place, Eigen::DSizes<IndexT, 1>(mid), x, out,
                   /* axis= */ 0, reverse, exclusive);
      } else {
        ComputeImp(*place, Eigen::DSizes<IndexT, 2>(mid, post), x, out,
                   /* axis= */ 0, reverse, exclusive);
      }
    } else {
      if (post == 1) {
        ComputeImp(*place, Eigen::DSizes<IndexT, 2>(pre, mid), x, out,
                   /* axis= */ 1, reverse, exclusive);
      } else {
        ComputeImp(*place, Eigen::DSizes<IndexT, 3>(pre, mid, post), x, out,
                   /* axis= */ 1, reverse, exclusive);
      }
    }
  }

 private:
  template <typename Device, typename Dim, typename X, typename Out>
  void ComputeImp(Device d, const Dim& dims, X x, Out out, int axis,
                  bool reverse, bool exclusive) const {
    if (!reverse) {
      out.reshape(dims).device(d) = Functor()(x.reshape(dims), axis, exclusive);
    } else {
      std::array<bool, Dim::count> rev;
      rev.fill(false);
      rev[axis] = reverse;
      out.reshape(dims).device(d) =
          Functor()(x.reshape(dims).reverse(rev), axis, exclusive).reverse(rev);
    }
  }
};

template <typename T>
struct CumsumFunctor {
  using ELEMENT_TYPE = T;
  template <typename X>
  const typename X::TensorScanSumOp operator()(X x, int axis,
                                               bool exclusive) const {
    return x.cumsum(axis, exclusive);
  }
};

}  // namespace operators
}  // namespace paddle