set_value_kernel_impl.h 12.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

17
#include "paddle/phi/common/int_array.h"
18 19
#include "paddle/phi/common/scalar.h"
#include "paddle/phi/core/dense_tensor.h"
20
#include "paddle/phi/core/tensor_utils.h"
21 22 23 24 25
#include "paddle/phi/kernels/empty_kernel.h"
#include "paddle/phi/kernels/funcs/broadcast_function.h"
#include "paddle/phi/kernels/funcs/eigen/common.h"
#include "paddle/phi/kernels/funcs/eigen/eigen_function.h"
#include "paddle/phi/kernels/funcs/elementwise_functor.h"
H
hong 已提交
26
#include "paddle/phi/kernels/funcs/slice_utils.h"
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

namespace phi {

// check whether the tensor with dimension of second can assign to the
// tensor with dimension of first
inline void CheckIsDimsMatch(const DDim& first, const DDim& second) {
  int ignore_axis1 = 0, ignore_axis2 = 0;
  for (; ignore_axis1 < first.size(); ++ignore_axis1) {
    if (first[ignore_axis1] != 1) {
      break;
    }
  }
  for (; ignore_axis2 < second.size(); ++ignore_axis2) {
    if (second[ignore_axis2] != 1) {
      break;
    }
  }

  if (second.size() == ignore_axis2) {
    // second tensor has only one value
    return;
  }

  if (first.size() - ignore_axis1 >= second.size() - ignore_axis2) {
    auto idx1 = first.size() - 1;
    auto idx2 = second.size() - 1;
    bool is_match = true;
    for (; idx2 >= ignore_axis2; idx2--) {
      if (first[idx1--] != second[idx2] && second[idx2] != 1) {
        is_match = false;
        break;
      }
    }
    if (is_match) {
      return;
    }
  }
  PADDLE_THROW(errors::InvalidArgument(
      "The shape of tensor assigned value must match the shape "
      "of target shape: %d, but now shape is %d.",
      second.to_str(),
      first.to_str()));
}

template <typename T, typename Context, size_t RANK>
void SetValueImpl(const Context& dev_ctx,
                  const DenseTensor& in,
                  const DenseTensor& value,
75 76 77
                  const IntArray& starts,
                  const IntArray& ends,
                  const IntArray& steps,
78 79 80 81 82 83 84 85
                  const std::vector<int64_t>& axes,
                  const std::vector<int64_t>& decrease_axes,
                  const std::vector<int64_t>& none_axes,
                  DenseTensor* out) {
  auto in_dims = in.dims();
  std::vector<int64_t> starts_local = starts.GetData();
  std::vector<int64_t> ends_local = ends.GetData();
  std::vector<int64_t> steps_local = steps.GetData();
H
hong 已提交
86
  phi::funcs::CheckAndUpdateSliceAttrs(
87
      in_dims, axes, &starts_local, &ends_local, &steps_local);
H
hong 已提交
88
  auto slice_dims = phi::funcs::GetSliceDims(
89 90
      in_dims, axes, starts_local, ends_local, &steps_local);
  auto decrease_slice_dims =
H
hong 已提交
91
      phi::funcs::GetDecreasedDims(slice_dims, decrease_axes);
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135

  auto slice_dims_for_assign = decrease_slice_dims;
  if (!none_axes.empty()) {
    std::vector<int64_t> slice_dims_with_none;

    size_t none_axes_cur = 0, decrease_axes_cur = 0;
    for (int i = 0; i < slice_dims.size(); ++i) {
      while (none_axes_cur < none_axes.size() &&
             none_axes[none_axes_cur] <= i) {
        slice_dims_with_none.push_back(1);
        none_axes_cur++;
      }
      if (decrease_axes_cur < decrease_axes.size() &&
          decrease_axes[decrease_axes_cur] == i) {
        decrease_axes_cur++;
      } else {
        slice_dims_with_none.push_back(slice_dims[i]);
      }
    }
    while (none_axes_cur < none_axes.size()) {
      slice_dims_with_none.push_back(1);
      none_axes_cur++;
    }

    slice_dims_for_assign = phi::make_ddim(slice_dims_with_none);
  }

  auto place = dev_ctx.GetPlace();
  auto& eigen_place = *dev_ctx.eigen_device();

  // Here copy data from input to avoid data loss at PE and Graph level.
  // TODO(liym27): Speed up in the future version.
  // - Q: Why don't call ShareDataWith to speed up?
  // - A: Because it's not supported to ShareDataWith on OP's input and output
  // https://github.com/PaddlePaddle/Paddle/wiki/ShareDataWith-and-ShareBufferWith-are-prohibited-in-OP
  // - Q: Why don't delete Input, after all, the input and output are the same
  // Tensor at program level?
  // - A: If deleting Input, the graph will be complex, such as there will
  // be two ops points to the output in graph: op1 -> output <- set_value.
  // In this case, we have to find a way to handle the running order of
  // set_value is what we want.
  Copy(dev_ctx, in, place, false, out);

  DenseTensor slice_tensor =
136
      Empty<T>(dev_ctx, IntArray{slice_dims.Get(), slice_dims.size()});
137
  DenseTensor pad_tensor =
138
      Empty<T>(dev_ctx, IntArray{in_dims.Get(), in_dims.size()});
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212

  auto pad_e = EigenTensor<T, RANK>::From(pad_tensor, in_dims);
  auto out_e = EigenTensor<T, RANK>::From(*out);
  auto slice_e = EigenTensor<T, RANK>::From(slice_tensor, slice_dims);

  // Step 1: Set the value of out at `_index` to zero
  slice_e.device(eigen_place) = slice_e.constant(T(0));

  auto starts_indices = Eigen::DSizes<Eigen::DenseIndex, RANK>();
  auto ends_indices = Eigen::DSizes<Eigen::DenseIndex, RANK>();
  auto strides_indices = Eigen::DSizes<Eigen::DenseIndex, RANK>();

  for (size_t i = 0; i < RANK; ++i) {
    starts_indices[i] = 0;
    ends_indices[i] = slice_dims[i];
    strides_indices[i] = 1;
  }
  for (size_t i = 0; i < axes.size(); i++) {
    int axis_index = axes[i];
    starts_indices[axis_index] = starts_local[i];
    ends_indices[axis_index] = ends_local[i];
    strides_indices[axis_index] = steps_local[i];
    if (starts_local[i] ==
        ends_local[i]) {  // slice is empty, data will not be changed
      return;
    }
  }

  out_e.stridedSlice(starts_indices, ends_indices, strides_indices)
      .device(eigen_place) = slice_e;

  // Step 2: Set a tensor with the same shape as out tensor. And its data at
  // '_index' is the same as value, and data out of '_index' to zero

  // - Step 2.1 Set slice tensor with value

  // NOTE(liym27): [ Why resize slice_tensor here? ]
  // A: When do broadcasting on slice_tensor and value, the shape of
  // slice_tensor should be decreased dims.
  // e.g.
  //  x[:,0] = value
  // x's shape = [3, 4], value's shape = [3]
  // We get slice_dims = [3, 1],  decrease_slice_dims = [3]
  // If do broadcasting on Tensor with shape [3, 1] and [3], the result's
  // shape is [3, 3], which cross the border;
  // If do broadcasting on Tensor with shape [3] and [3], the result's shape
  // is [3], which is right.

  slice_tensor.Resize(slice_dims_for_assign);
  CheckIsDimsMatch(slice_dims_for_assign, value.dims());
  // ElementwiseComputeEx can do broadcasting
  funcs::ElementwiseCompute<funcs::SubtractFunctor<T>, T>(
      dev_ctx,
      slice_tensor,
      value,
      -1,
      funcs::SubtractFunctor<T>(),
      &slice_tensor);

  slice_tensor.Resize(slice_dims);

  // - Step 2.2 Pad slice tensor with 0
  pad_e.device(eigen_place) = pad_e.constant(T(0));
  pad_e.stridedSlice(starts_indices, ends_indices, strides_indices)
      .device(eigen_place) = slice_e;

  // Step 3: Set out tensor with value
  out_e.device(eigen_place) = out_e - pad_e;
}

template <typename T, typename Context>
void SetTensorValueKernel(const Context& dev_ctx,
                          const DenseTensor& x,
                          const DenseTensor& value,
213 214 215
                          const IntArray& starts,
                          const IntArray& ends,
                          const IntArray& steps,
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
                          const std::vector<int64_t>& axes,
                          const std::vector<int64_t>& decrease_axes,
                          const std::vector<int64_t>& none_axes,
                          DenseTensor* out) {
  const int rank = x.dims().size();

  switch (rank) {
    case 1:
      SetValueImpl<T, Context, 1>(dev_ctx,
                                  x,
                                  value,
                                  starts,
                                  ends,
                                  steps,
                                  axes,
                                  decrease_axes,
                                  none_axes,
                                  out);
      break;
    case 2:
      SetValueImpl<T, Context, 2>(dev_ctx,
                                  x,
                                  value,
                                  starts,
                                  ends,
                                  steps,
                                  axes,
                                  decrease_axes,
                                  none_axes,
                                  out);
      break;
    case 3:
      SetValueImpl<T, Context, 3>(dev_ctx,
                                  x,
                                  value,
                                  starts,
                                  ends,
                                  steps,
                                  axes,
                                  decrease_axes,
                                  none_axes,
                                  out);
      break;
    case 4:
      SetValueImpl<T, Context, 4>(dev_ctx,
                                  x,
                                  value,
                                  starts,
                                  ends,
                                  steps,
                                  axes,
                                  decrease_axes,
                                  none_axes,
                                  out);
      break;
    case 5:
      SetValueImpl<T, Context, 5>(dev_ctx,
                                  x,
                                  value,
                                  starts,
                                  ends,
                                  steps,
                                  axes,
                                  decrease_axes,
                                  none_axes,
                                  out);
      break;
    case 6:
      SetValueImpl<T, Context, 6>(dev_ctx,
                                  x,
                                  value,
                                  starts,
                                  ends,
                                  steps,
                                  axes,
                                  decrease_axes,
                                  none_axes,
                                  out);
      break;
    default:
      PADDLE_THROW(errors::InvalidArgument(
          "The rank of input should be less than 7, but received %d.", rank));
  }
}

template <typename T, typename Context>
void SetValueKernel(const Context& dev_ctx,
                    const DenseTensor& x,
304 305 306
                    const IntArray& starts,
                    const IntArray& ends,
                    const IntArray& steps,
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
                    const std::vector<int64_t>& axes,
                    const std::vector<int64_t>& decrease_axes,
                    const std::vector<int64_t>& none_axes,
                    const std::vector<int64_t>& shape,
                    const std::vector<Scalar>& values,
                    DenseTensor* out) {
  std::vector<T> assgin_values;
  assgin_values.reserve(values.size());
  for (const auto& val : values) {
    assgin_values.push_back(val.to<T>());
  }
  DenseTensor value_tensor = Empty<T>(dev_ctx, shape);
  paddle::framework::TensorFromVector(assgin_values, dev_ctx, &value_tensor);
  value_tensor.Resize(phi::make_ddim(shape));

  SetTensorValueKernel<T, Context>(dev_ctx,
                                   x,
                                   value_tensor,
                                   starts,
                                   ends,
                                   steps,
                                   axes,
                                   decrease_axes,
                                   none_axes,
                                   out);
}

}  // namespace phi