resnet.py 11.3 KB
Newer Older
D
dzhwinter 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import argparse
import functools
import numpy as np
import time

import cProfile, pstats, StringIO

import paddle.v2 as paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
import paddle.fluid.profiler as profiler


def parse_args():
    parser = argparse.ArgumentParser('Convolution model benchmark.')
    parser.add_argument(
        '--model',
        type=str,
        choices=['resnet_imagenet', 'resnet_cifar10'],
        default='resnet_imagenet',
        help='The model architecture.')
    parser.add_argument(
        '--batch_size', type=int, default=32, help='The minibatch size.')
    parser.add_argument(
        '--use_fake_data',
        action='store_true',
        help='use real data or fake data')
    parser.add_argument(
        '--skip_batch_num',
        type=int,
        default=5,
        help='The first num of minibatch num to skip, for better performance test'
    )
    parser.add_argument(
        '--iterations', type=int, default=80, help='The number of minibatches.')
    parser.add_argument(
        '--pass_num', type=int, default=100, help='The number of passes.')
    parser.add_argument(
        '--data_format',
        type=str,
        default='NCHW',
        choices=['NCHW', 'NHWC'],
        help='The data data_format, now only support NCHW.')
    parser.add_argument(
        '--device',
        type=str,
        default='GPU',
        choices=['CPU', 'GPU'],
        help='The device type.')
    parser.add_argument(
        '--data_set',
        type=str,
        default='flowers',
        choices=['cifar10', 'flowers'],
        help='Optional dataset for benchmark.')
    parser.add_argument(
        '--infer_only', action='store_true', help='If set, run forward only.')
    parser.add_argument(
        '--use_cprof', action='store_true', help='If set, use cProfile.')
    parser.add_argument(
        '--use_nvprof',
        action='store_true',
        help='If set, use nvprof for CUDA.')
    parser.add_argument(
        '--with_test',
        action='store_true',
        help='If set, test the testset during training.')
    args = parser.parse_args()
    return args


def print_arguments(args):
    vars(args)['use_nvprof'] = (vars(args)['use_nvprof'] and
                                vars(args)['device'] == 'GPU')
    print('-----------  Configuration Arguments -----------')
    for arg, value in sorted(vars(args).iteritems()):
        print('%s: %s' % (arg, value))
    print('------------------------------------------------')


def conv_bn_layer(input, ch_out, filter_size, stride, padding, act='relu'):
    conv1 = fluid.layers.conv2d(
        input=input,
        filter_size=filter_size,
        num_filters=ch_out,
        stride=stride,
        padding=padding,
        act=None,
        bias_attr=False)
    return fluid.layers.batch_norm(input=conv1, act=act)


def shortcut(input, ch_out, stride):
    ch_in = input.shape[1] if args.data_format == 'NCHW' else input.shape[-1]
    if ch_in != ch_out:
        return conv_bn_layer(input, ch_out, 1, stride, 0, None)
    else:
        return input


def basicblock(input, ch_out, stride):
    short = shortcut(input, ch_out, stride)
    conv1 = conv_bn_layer(input, ch_out, 3, stride, 1)
    conv2 = conv_bn_layer(conv1, ch_out, 3, 1, 1, act=None)
    return fluid.layers.elementwise_add(x=short, y=conv2, act='relu')


def bottleneck(input, ch_out, stride):
    short = shortcut(input, ch_out * 4, stride)
    conv1 = conv_bn_layer(input, ch_out, 1, stride, 0)
    conv2 = conv_bn_layer(conv1, ch_out, 3, 1, 1)
    conv3 = conv_bn_layer(conv2, ch_out * 4, 1, 1, 0, act=None)
    return fluid.layers.elementwise_add(x=short, y=conv3, act='relu')


def layer_warp(block_func, input, ch_out, count, stride):
    res_out = block_func(input, ch_out, stride)
    for i in range(1, count):
        res_out = block_func(res_out, ch_out, 1)
    return res_out


def resnet_imagenet(input, class_dim, depth=50, data_format='NCHW'):

    cfg = {
        18: ([2, 2, 2, 1], basicblock),
        34: ([3, 4, 6, 3], basicblock),
        50: ([3, 4, 6, 3], bottleneck),
        101: ([3, 4, 23, 3], bottleneck),
        152: ([3, 8, 36, 3], bottleneck)
    }
    stages, block_func = cfg[depth]
    conv1 = conv_bn_layer(input, ch_out=64, filter_size=7, stride=2, padding=3)
    pool1 = fluid.layers.pool2d(
        input=conv1, pool_type='avg', pool_size=3, pool_stride=2)
    res1 = layer_warp(block_func, pool1, 64, stages[0], 1)
    res2 = layer_warp(block_func, res1, 128, stages[1], 2)
    res3 = layer_warp(block_func, res2, 256, stages[2], 2)
    res4 = layer_warp(block_func, res3, 512, stages[3], 2)
    pool2 = fluid.layers.pool2d(
        input=res4,
        pool_size=7,
        pool_type='avg',
        pool_stride=1,
        global_pooling=True)
    out = fluid.layers.fc(input=pool2, size=class_dim, act='softmax')
    return out


def resnet_cifar10(input, class_dim, depth=32, data_format='NCHW'):
    assert (depth - 2) % 6 == 0

    n = (depth - 2) // 6

    conv1 = conv_bn_layer(
        input=input, ch_out=16, filter_size=3, stride=1, padding=1)
    res1 = layer_warp(basicblock, conv1, 16, n, 1)
    res2 = layer_warp(basicblock, res1, 32, n, 2)
    res3 = layer_warp(basicblock, res2, 64, n, 2)
    pool = fluid.layers.pool2d(
        input=res3, pool_size=8, pool_type='avg', pool_stride=1)
    out = fluid.layers.fc(input=pool, size=class_dim, act='softmax')
    return out


def run_benchmark(model, args):
    if args.use_cprof:
        pr = cProfile.Profile()
        pr.enable()

    if args.data_set == "cifar10":
        class_dim = 10
        if args.data_format == 'NCHW':
            dshape = [3, 32, 32]
        else:
            dshape = [32, 32, 3]
    else:
        class_dim = 102
        if args.data_format == 'NCHW':
            dshape = [3, 224, 224]
        else:
            dshape = [224, 224, 3]

    input = fluid.layers.data(name='data', shape=dshape, dtype='float32')
    label = fluid.layers.data(name='label', shape=[1], dtype='int64')
    predict = model(input, class_dim)
    cost = fluid.layers.cross_entropy(input=predict, label=label)
    avg_cost = fluid.layers.mean(x=cost)

    batch_size_tensor = fluid.layers.create_tensor(dtype='int64')
    batch_acc = fluid.layers.accuracy(
        input=predict, label=label, total=batch_size_tensor)

    inference_program = fluid.default_main_program().clone()
    with fluid.program_guard(inference_program):
        inference_program = fluid.io.get_inference_program(
            target_vars=[batch_acc, batch_size_tensor])

    optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
    opts = optimizer.minimize(avg_cost)

    fluid.memory_optimize(fluid.default_main_program())

    train_reader = paddle.batch(
        paddle.reader.shuffle(
            paddle.dataset.cifar.train10()
            if args.data_set == 'cifar10' else paddle.dataset.flowers.train(),
            buf_size=5120),
        batch_size=args.batch_size)
    test_reader = paddle.batch(
        paddle.dataset.cifar.test10()
        if args.data_set == 'cifar10' else paddle.dataset.flowers.test(),
        batch_size=args.batch_size)

    def test(exe):
        test_accuracy = fluid.average.WeightedAverage()
        for batch_id, data in enumerate(test_reader()):
            img_data = np.array(map(lambda x: x[0].reshape(dshape),
                                    data)).astype("float32")
            y_data = np.array(map(lambda x: x[1], data)).astype("int64")
            y_data = y_data.reshape([-1, 1])

            acc, weight = exe.run(inference_program,
                                  feed={"data": img_data,
                                        "label": y_data},
                                  fetch_list=[batch_acc, batch_size_tensor])
            test_accuracy.add(value=acc, weight=weight)

        return test_accuracy.eval()

    place = core.CPUPlace() if args.device == 'CPU' else core.CUDAPlace(0)
    exe = fluid.Executor(place)
    exe.run(fluid.default_startup_program())
    accuracy = fluid.average.WeightedAverage()
    if args.use_fake_data:
        data = train_reader().next()
        image = np.array(map(lambda x: x[0].reshape(dshape), data)).astype(
            'float32')
        label = np.array(map(lambda x: x[1], data)).astype('int64')
        label = label.reshape([-1, 1])

    iters, num_samples, start_time = 0, 0, time.time()
    for pass_id in range(args.pass_num):
        accuracy.reset()
        train_accs = []
        train_losses = []
        for batch_id, data in enumerate(train_reader()):
            if iters == args.skip_batch_num:
                start_time = time.time()
                num_samples = 0
            if iters == args.iterations:
                break
            if not args.use_fake_data:
                image = np.array(map(lambda x: x[0].reshape(dshape),
                                     data)).astype('float32')
                label = np.array(map(lambda x: x[1], data)).astype('int64')
                label = label.reshape([-1, 1])
            loss, acc, weight = exe.run(
                fluid.default_main_program(),
                feed={'data': image,
                      'label': label},
                fetch_list=[avg_cost, batch_acc, batch_size_tensor])
            iters += 1
            num_samples += label[0]
            accuracy.add(value=acc, weight=weight)
            train_losses.append(loss)
            train_accs.append(acc)
            print("Pass: %d, Iter: %d, Loss: %f, Accuracy: %f" %
                  (pass_id, iters, loss, acc))
        pass_train_acc = accuracy.eval()
        # evaluation
        if args.with_test:
            pass_test_acc = test(exe)
        train_elapsed = time.time() - start_time
        print("Pass: %d, Loss: %f, Train Accuray: %f\n" %
              (pass_id, np.mean(train_losses), np.mean(train_accs)))

        examples_per_sec = num_samples / train_elapsed

        print('\nTotal examples: %d, total time: %.5f, %.5f examples/sed\n' %
              (num_samples, train_elapsed, examples_per_sec))

    if args.use_cprof:
        pr.disable()
        s = StringIO.StringIO()
        sortby = 'cumulative'
        ps = pstats.Stats(pr, stream=s).sort_stats(sortby)
        ps.print_stats()
        print(s.getvalue())


if __name__ == '__main__':
    model_map = {
        'resnet_imagenet': resnet_imagenet,
        'resnet_cifar10': resnet_cifar10
    }
    args = parse_args()
    print_arguments(args)
    if args.data_format == 'NHWC':
        raise ValueError('Only support NCHW data_format now.')
    if args.use_nvprof and args.device == 'GPU':
        with profiler.cuda_profiler("cuda_profiler.txt", 'csv') as nvprof:
            run_benchmark(model_map[args.model], args)
    else:
        run_benchmark(model_map[args.model], args)