test_lerp_op.py 5.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np
from op_test import OpTest
import paddle
import paddle.fluid.core as core

paddle.enable_static()
np.random.seed(0)


class TestLerp(OpTest):
    def setUp(self):
        self.op_type = "lerp"
        self.init_dtype()
        self.init_shape()
        x = np.arange(1., 101.).astype(self.dtype).reshape(self.shape)
        y = np.full(100, 10.).astype(self.dtype).reshape(self.shape)
        w = np.asarray([0.5]).astype(self.dtype)
        self.inputs = {'X': x, 'Y': y, 'Weight': w}
        self.outputs = {'Out': x + w * (y - x)}

    def init_dtype(self):
        self.dtype = np.float64

    def init_shape(self):
        self.shape = [100]

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X', 'Y'], 'Out')


class TestLerpWithDim2(TestLerp):
    def init_shape(self):
        self.shape = [2, 50]


class TestLerpWithDim3(TestLerp):
    def init_shape(self):
        self.shape = [2, 2, 25]


class TestLerpWithDim4(TestLerp):
    def init_shape(self):
        self.shape = [2, 2, 5, 5]


class TestLerpWithDim5(TestLerp):
    def init_shape(self):
        self.shape = [2, 1, 2, 5, 5]


class TestLerpWithDim6(TestLerp):
    def init_shape(self):
        self.shape = [2, 1, 2, 5, 1, 5]


class TestLerpAPI(unittest.TestCase):
    def init_dtype(self):
        self.dtype = 'float32'

    def setUp(self):
        self.init_dtype()
        self.x = np.arange(1., 5.).astype(self.dtype)
        self.y = np.full(4, 10.).astype(self.dtype)
        self.w = np.asarray([0.75]).astype(self.dtype)
        self.res_ref = self.x + self.w * (self.y - self.x)
        self.place = [paddle.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.place.append(paddle.CUDAPlace(0))

    def test_static_api(self):
        paddle.enable_static()

        def run(place):
            with paddle.static.program_guard(paddle.static.Program()):
                x = paddle.fluid.data('x', [1, 4], dtype=self.dtype)
                y = paddle.fluid.data('y', [1, 4], dtype=self.dtype)
                w = paddle.fluid.data('w', [1], dtype=self.dtype)
                out = paddle.lerp(x, y, w)
                exe = paddle.static.Executor(place)
                res = exe.run(feed={
                    'x': self.x.reshape([1, 4]),
                    'y': self.y.reshape([1, 4]),
                    'w': self.w
                })
            for r in res:
                self.assertEqual(np.allclose(self.res_ref, r), True)

        for place in self.place:
            run(place)

    def test_dygraph_api(self):
        def run(place):
            paddle.disable_static(place)
            x = paddle.to_tensor(self.x)
            y = paddle.to_tensor(self.y)
            w = paddle.to_tensor(np.full(4, 0.75).astype(self.dtype))
            out = paddle.lerp(x, y, w)
            self.assertEqual(np.allclose(self.res_ref, out.numpy()), True)
            paddle.enable_static()

        for place in self.place:
            run(place)

    def test_inplace_api(self):
        def run(place):
            paddle.disable_static(place)
            x = paddle.to_tensor(self.x)
            y = paddle.to_tensor(self.y)
            x.lerp_(y, 0.75)
            self.assertEqual(np.allclose(self.res_ref, x.numpy()), True)
            paddle.enable_static()

        for place in self.place:
            run(place)

    def test_inplace_api_exception(self):
        def run(place):
            paddle.disable_static(place)
            x = paddle.to_tensor(self.x)
            y = paddle.to_tensor(self.y)
            w = paddle.to_tensor([0.75, 0.75], dtype=self.dtype)
            with self.assertRaises(ValueError):
                x.lerp_(y, w)
            paddle.enable_static()

        for place in self.place:
            run(place)

    def test_x_broadcast_y(self):
        paddle.disable_static()
        x = np.arange(1., 21.).astype(self.dtype).reshape([2, 2, 5])
        y = np.full(30, 10.).astype(self.dtype).reshape([3, 2, 1, 5])
        out = paddle.lerp(paddle.to_tensor(x), paddle.to_tensor(y), 0.5)
        res_ref = x + 0.5 * (y - x)
        self.assertEqual(np.allclose(res_ref, out.numpy()), True)
        paddle.enable_static()

    def test_x_y_broadcast_w(self):
        paddle.disable_static()
        x = np.arange(11., 21.).astype(self.dtype).reshape([2, 5])
        y = np.full(20, 7.5).astype(self.dtype).reshape([2, 2, 5])
        w = np.full(40, 0.225).astype(self.dtype).reshape([2, 2, 2, 5])
        out = paddle.lerp(
            paddle.to_tensor(x), paddle.to_tensor(y), paddle.to_tensor(w))
        res_ref = x + w * (y - x)
        self.assertEqual(np.allclose(res_ref, out.numpy()), True)
        paddle.enable_static()


if __name__ == "__main__":
    unittest.main()