kernel_factory.h 9.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
//   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <ostream>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>

#include "paddle/pten/common/backend.h"
#include "paddle/pten/common/data_type.h"
#include "paddle/pten/common/layout.h"
#include "paddle/pten/core/kernel_def.h"

// See Note [ Why still include the fluid headers? ]
#include "paddle/fluid/platform/enforce.h"
#include "paddle/utils/flat_hash_map.h"
#include "paddle/utils/small_vector.h"

namespace pten {

using DataType = paddle::experimental::DataType;
using DataLayout = paddle::experimental::DataLayout;

/**
 * [ Naming considerations ]
 *
 * The tensor operation library contains many kernels, and the computation
 * in each specific scenario is represented by an kernel.
 *
 * We directly named it `Kernel` instead of `Kernel`, the tensor operation
 * library here and fluid are independent, avoiding developers from
 * misunderstanding the relationship between the two concepts.
 */

class KernelContext;

using KernelFn = void (*)(KernelContext* ctx);

class KernelName final {
 public:
  KernelName(std::string name, std::string overload_name)
      : name_(std::move(name)), overload_name_(std::move(overload_name)) {}

  KernelName(const std::string& kernel_name) {
    ParseNameAndOverloadNameFromString(kernel_name);
  }

  KernelName(const char* kernel_name) {
    std::string kernel_name_str(kernel_name);
    ParseNameAndOverloadNameFromString(kernel_name_str);
  }

  const std::string& name() const { return name_; }
  const std::string& overload_name() const { return overload_name_; }

  struct Hash {
    size_t operator()(const KernelName& kernel_name) const {
      return std::hash<std::string>()(kernel_name.name()) ^
             (std::hash<std::string>()(kernel_name.overload_name()) << 1);
    }
  };

  size_t hash_value() const { return Hash()(*this); }

  bool operator<(const KernelName& kernel_name) const {
    return hash_value() < kernel_name.hash_value();
  }

  bool operator==(const KernelName& kernel_name) const {
    return hash_value() == kernel_name.hash_value();
  }

  bool operator!=(const KernelName& kernel_name) const {
    return hash_value() != kernel_name.hash_value();
  }

 private:
  void ParseNameAndOverloadNameFromString(const std::string& kernel_name) {
    size_t pos = kernel_name.find_first_of('.');
    if (pos == std::string::npos) {
      name_ = kernel_name;
      overload_name_ = "";
    } else {
      name_ = kernel_name.substr(0, pos);
      overload_name_ = kernel_name.substr(pos + 1, kernel_name.size());
    }
  }

  // TODO(chenweihang): use string_view to improve performance later
  std::string name_;
  std::string overload_name_;
};

class KernelKey {
 public:
  KernelKey() = default;

  KernelKey(Backend backend, DataLayout layout, DataType dtype)
      : backend_(backend), layout_(layout), dtype_(dtype) {}

  Backend backend() const { return backend_; }
  DataLayout layout() const { return layout_; }
  DataType dtype() const { return dtype_; }

  struct Hash {
    // Note: Now the number of bits we need does not exceed 32 bits, so there is
    // no need to use 64 bits. If needed in the future, it can be expanded,
    // but now we don’t over-design.
    uint32_t operator()(const KernelKey& key) const;
  };

  uint32_t hash_value() const { return Hash()(*this); }

  bool operator<(const KernelKey& key) const {
    return hash_value() < key.hash_value();
  }

  bool operator==(const KernelKey& key) const {
    return hash_value() == key.hash_value();
  }

  bool operator!=(const KernelKey& key) const {
    return hash_value() != key.hash_value();
  }

 private:
  // In total should be smaller than 32.
  constexpr static int kBackendBitLength = 8;
  constexpr static int kDataLayoutBitLength = 4;
  constexpr static int kDataTypeBitLength = 8;

  Backend backend_{Backend::UNDEFINED};
  DataLayout layout_{DataLayout::UNDEFINED};
  DataType dtype_{DataType::UNDEFINED};
};

// TODO(chenweihang): how deal with vector<Param>?
struct TensorArgDef {
  Backend backend;
  DataLayout layout;
  DataType dtype;

  TensorArgDef(Backend in_backend, DataLayout in_layout, DataType in_dtype)
      : backend(in_backend), layout(in_layout), dtype(in_dtype) {}

  TensorArgDef& SetBackend(Backend in_backend) {
    backend = in_backend;
    return *this;
  }

  TensorArgDef& SetDataLayout(DataLayout in_layout) {
    layout = in_layout;
    return *this;
  }

  TensorArgDef& SetDataType(DataType in_dtype) {
    dtype = in_dtype;
    return *this;
  }
};

struct AttributeArgDef {
  std::type_index type_index;

  explicit AttributeArgDef(std::type_index type_index)
      : type_index(type_index) {}
};

class KernelArgsDef {
 public:
  KernelArgsDef() = default;

  void AppendInput(Backend backend, DataLayout layout, DataType dtype) {
    input_defs_.emplace_back(TensorArgDef(backend, layout, dtype));
  }

  void AppendOutput(Backend backend, DataLayout layout, DataType dtype) {
    output_defs_.emplace_back(TensorArgDef(backend, layout, dtype));
  }

  void AppendAttribute(std::type_index type_index) {
    attribute_defs_.emplace_back(AttributeArgDef(type_index));
  }

  const paddle::SmallVector<TensorArgDef>& input_defs() const {
    return input_defs_;
  }

  const paddle::SmallVector<TensorArgDef>& output_defs() const {
    return output_defs_;
  }

  const paddle::SmallVector<AttributeArgDef>& attribute_defs() const {
    return attribute_defs_;
  }

  paddle::SmallVector<TensorArgDef>& input_defs() { return input_defs_; }

  paddle::SmallVector<TensorArgDef>& output_defs() { return output_defs_; }

  paddle::SmallVector<AttributeArgDef>& attribute_defs() {
    return attribute_defs_;
  }

 private:
  paddle::SmallVector<TensorArgDef> input_defs_{{}};
  paddle::SmallVector<TensorArgDef> output_defs_{{}};
  paddle::SmallVector<AttributeArgDef> attribute_defs_{{}};
};

class Kernel {
 public:
  // for map element contruct
  Kernel() = default;

  explicit Kernel(KernelFn fn) : fn_(fn) {}

  void operator()(KernelContext* ctx) const { fn_(ctx); }

  KernelArgsDef* mutable_args_def() { return &args_def_; }

  const KernelArgsDef& args_def() const { return args_def_; }

  TensorArgDef& InputAt(size_t idx) { return args_def_.input_defs().at(idx); }

  TensorArgDef& OutputAt(size_t idx) { return args_def_.output_defs().at(idx); }

  bool IsValid() { return fn_ != nullptr; }

 private:
  KernelFn fn_{nullptr};
  KernelArgsDef args_def_;
};

/**
 * Note: Each Computation need a basic kernel map that named by kernel_name.
 *       Such as for scale op, KernelMap contains a `scale` kernel map,
 *       if it still need other overload kernel, the op name can be
 *       `scale.***`.
 */
class KernelFactory {
 public:
  // replaced by paddle::flat_hash_map later
  using KernelMap = paddle::flat_hash_map<
      KernelName,
      paddle::flat_hash_map<KernelKey, Kernel, KernelKey::Hash>,
      KernelName::Hash>;

  static KernelFactory& Instance();

  KernelMap& kernels() { return kernels_; }

  void InsertCompatibleOpType(const std::string& op_type) {
    compatible_op_types_.insert(op_type);
  }

  bool HasCompatiblePtenKernel(const std::string& op_type) const {
    return compatible_op_types_.count(op_type) > 0;
  }

  const Kernel& SelectKernelOrThrowError(const KernelName& kernel_name,
                                         const KernelKey& kernel_key) const;

  const Kernel& SelectKernelOrThrowError(const KernelName& kernel_name,
                                         Backend backend,
                                         DataLayout layout,
                                         DataType dtype) const;

  Kernel SelectKernel(const KernelName& kernel_name,
                      const KernelKey& kernel_key) const;

 private:
  KernelFactory() = default;

  KernelMap kernels_;
  // Used to be compatible with the original execution system and
  // quickly confirm whether the new kernel can be called
  std::unordered_set<std::string> compatible_op_types_;
};

/** operator << overload **/

inline std::ostream& operator<<(std::ostream& os,
                                const KernelName& kernel_name) {
  if (kernel_name.overload_name().empty()) {
    os << kernel_name.name();
  } else {
    os << kernel_name.name() << "." << kernel_name.overload_name();
  }
  return os;
}

inline std::ostream& operator<<(std::ostream& os, const KernelKey& kernel_key) {
  os << "(" << kernel_key.backend() << ", " << kernel_key.layout() << ", "
     << kernel_key.dtype() << ")";
  return os;
}

std::ostream& operator<<(std::ostream& os, const Kernel& kernel);

std::ostream& operator<<(std::ostream& os, KernelFactory& kernel_factory);

}  // namespace pten