tensor.cc 13.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/pten/api/include/tensor.h"

#include <memory>
#include <utility>
#include <vector>

#include "glog/logging.h"
22
#include "paddle/pten/api/include/manipulation.h"
23
#include "paddle/pten/api/include/utils.h"
24 25 26
#include "paddle/pten/api/lib/ext_compat_utils.h"
#include "paddle/pten/api/lib/utils/allocator.h"
#include "paddle/pten/api/lib/utils/storage.h"
27
#include "paddle/pten/core/compat_utils.h"
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
#include "paddle/pten/core/dense_tensor.h"
#include "paddle/pten/core/tensor_base.h"
#include "paddle/pten/core/tensor_meta.h"

/**
 * [ Why still include the fluid headers? ]
 *
 * We hope to organize the basic implementation of Tensor and the logic related
 * to Tensor computation into an independent library, which we call
 * [Tensor Operation Library, pten], so we extract or rewrite the original
 * Kernels.
 *
 * In the future, the training library, inference library and custom operators
 * will link to this Tensor Operation library.
 *
 * However, if we directly split the link relation, we need to make too many
 * changes, which will affect the stability of the framework, so here we still
 * rely on the implementation of the framework, which is a intermediate state.
 *
 * In the future, the necessary components will be moved to the this library,
 * or the corresponding components will be re-implemented.
 */
#include "paddle/fluid/framework/ddim.h"
#include "paddle/fluid/memory/memory.h"
#include "paddle/fluid/platform/complex.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/float16.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/stream/cuda_stream.h"

namespace paddle {
namespace experimental {

namespace detail {

inline bool IsDenseTensor(
    const std::shared_ptr<pten::TensorBase> &tensor_impl) {
  return tensor_impl->type_info().name() == "DenseTensor";
}

}  // namespace detail

/////// Tensor Methods ////////

/* Part 1: Construction and destruction methods */

Tensor::Tensor(std::shared_ptr<pten::TensorBase> tensor_impl)
    : impl_(std::move(tensor_impl)) {
  PADDLE_ENFORCE_NOT_NULL(impl_,
                          platform::errors::InvalidArgument(
                              "TensorImpl with nullptr is not supported"));
}

Tensor::Tensor(const PlaceType &place)
    : impl_(std::move(std::make_shared<pten::DenseTensor>(
          std::move(pten::make_intrusive<SharedStorage>(
              ConvertExtPlaceToInnerPlace(place))),
          std::move(pten::DenseTensorMeta(pten::DataType::UNDEFINED,
                                          framework::make_ddim({}),
                                          pten::DataLayout::NCHW))))) {}

Tensor::Tensor(const PlaceType &place, const std::vector<int64_t> &shape)
    : impl_(std::move(std::make_shared<pten::DenseTensor>(
          std::move(pten::make_intrusive<SharedStorage>(
              ConvertExtPlaceToInnerPlace(place))),
          std::move(pten::DenseTensorMeta(pten::DataType::UNDEFINED,
                                          framework::make_ddim(shape),
                                          pten::DataLayout::NCHW))))) {}

/* Part 2: Dimension, DataType and DataLayout methods */

int64_t Tensor::numel() const { return impl_->numel(); }

int64_t Tensor::size() const { return impl_->numel(); }

paddle::framework::DDim Tensor::dims() const { return impl_->dims(); }

std::vector<int64_t> Tensor::shape() const {
  return paddle::framework::vectorize<int64_t>(impl_->dims());
}

void Tensor::reshape(const std::vector<int64_t> &shape) {
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
  LOG(WARNING) << "The function of resetting the shape of the uninitialized "
                  "Tensor of the `reshape` method is deprecated since version "
                  "2.3, and will be removed in version 2.4, please use "
                  "`paddle::experimental::full` method to create a new Tensor "
                  "instead. "
                  "reason: `reshape` means changing the tensor shape without "
                  "touching underlying data, this requires the total size of "
                  "the tensor to remain constant.";
  if (detail::IsDenseTensor(impl_)) {
    std::dynamic_pointer_cast<pten::DenseTensor>(impl_)->set_meta(
        pten::DenseTensorMeta(dtype(), framework::make_ddim(shape)));
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Only support reshape operation on DenseTensor now."));
  }
125 126
}

127
DataType Tensor::dtype() const { return impl_->dtype(); }
128

129
DataType Tensor::type() const { return impl_->dtype(); }
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253

DataLayout Tensor::layout() const { return impl_->layout(); }

/* Part 3: Device and Backend methods */

PlaceType Tensor::place() const {
  return ConvertInnerPlaceToExtPlace(impl_->place());
}

paddle::platform::Place Tensor::inner_place() const { return impl_->place(); }

bool Tensor::is_cpu() const {
  return paddle::platform::is_cpu_place(impl_->place());
}

bool Tensor::is_cuda() const {
  return paddle::platform::is_gpu_place(impl_->place());
}

/* Part 4: Data Access methods */

template <typename T>
T *Tensor::mutable_data() {
  if (detail::IsDenseTensor(impl_)) {
    return std::dynamic_pointer_cast<pten::DenseTensor>(impl_)
        ->mutable_data<T>();
  }
  return nullptr;
}

template PD_DLL_DECL float *Tensor::mutable_data<float>();
template PD_DLL_DECL double *Tensor::mutable_data<double>();
template PD_DLL_DECL int64_t *Tensor::mutable_data<int64_t>();
template PD_DLL_DECL int32_t *Tensor::mutable_data<int32_t>();
template PD_DLL_DECL uint8_t *Tensor::mutable_data<uint8_t>();
template PD_DLL_DECL int8_t *Tensor::mutable_data<int8_t>();
template PD_DLL_DECL int16_t *Tensor::mutable_data<int16_t>();
template PD_DLL_DECL bool *Tensor::mutable_data<bool>();
template PD_DLL_DECL paddle::platform::complex<float>
    *Tensor::mutable_data<paddle::platform::complex<float>>();
template PD_DLL_DECL paddle::platform::complex<double>
    *Tensor::mutable_data<paddle::platform::complex<double>>();
template PD_DLL_DECL paddle::platform::float16 *
Tensor::mutable_data<paddle::platform::float16>();

template <typename T>
T *Tensor::mutable_data(const PlaceType &place) {
  auto inner_place = ConvertExtPlaceToInnerPlace(place);
  PADDLE_ENFORCE_EQ(
      platform::is_same_place(inner_place, impl_->place()),
      true,
      platform::errors::Unimplemented("Modification of tensor place through "
                                      "mutable_data is not supported now"));
  return mutable_data<T>();
}

template PD_DLL_DECL float *Tensor::mutable_data<float>(const PlaceType &place);
template PD_DLL_DECL double *Tensor::mutable_data<double>(
    const PlaceType &place);
template PD_DLL_DECL int64_t *Tensor::mutable_data<int64_t>(
    const PlaceType &place);
template PD_DLL_DECL int32_t *Tensor::mutable_data<int32_t>(
    const PlaceType &place);
template PD_DLL_DECL uint8_t *Tensor::mutable_data<uint8_t>(
    const PlaceType &place);
template PD_DLL_DECL int8_t *Tensor::mutable_data<int8_t>(
    const PlaceType &place);
template PD_DLL_DECL int16_t *Tensor::mutable_data<int16_t>(
    const PlaceType &place);
template PD_DLL_DECL bool *Tensor::mutable_data<bool>(const PlaceType &place);
template PD_DLL_DECL paddle::platform::complex<float> *
Tensor::mutable_data<paddle::platform::complex<float>>(const PlaceType &place);
template PD_DLL_DECL paddle::platform::complex<double> *
Tensor::mutable_data<paddle::platform::complex<double>>(const PlaceType &place);
template PD_DLL_DECL paddle::platform::float16 *
Tensor::mutable_data<paddle::platform::float16>(const PlaceType &place);

template <typename T>
const T *Tensor::data() const {
  if (detail::IsDenseTensor(impl_)) {
    return std::dynamic_pointer_cast<pten::DenseTensor>(impl_)->data<T>();
  }
  return nullptr;
}

template PD_DLL_DECL const float *Tensor::data<float>() const;
template PD_DLL_DECL const double *Tensor::data<double>() const;
template PD_DLL_DECL const int64_t *Tensor::data<int64_t>() const;
template PD_DLL_DECL const int32_t *Tensor::data<int32_t>() const;
template PD_DLL_DECL const uint8_t *Tensor::data<uint8_t>() const;
template PD_DLL_DECL const int8_t *Tensor::data<int8_t>() const;
template PD_DLL_DECL const int16_t *Tensor::data<int16_t>() const;
template PD_DLL_DECL const bool *Tensor::data<bool>() const;
template PD_DLL_DECL const paddle::platform::complex<float>
    *Tensor::data<paddle::platform::complex<float>>() const;
template PD_DLL_DECL const paddle::platform::complex<double>
    *Tensor::data<paddle::platform::complex<double>>() const;
template PD_DLL_DECL const paddle::platform::float16 *
Tensor::data<paddle::platform::float16>() const;

template <typename T>
T *Tensor::data() {
  PADDLE_THROW(platform::errors::Unimplemented(
      "It is not currently supported to directly obtain the modifiable data "
      "address through the tensor::data<T>() method, please use the "
      "tensor::mutable_data<T>() method."));
  return nullptr;
}

template PD_DLL_DECL float *Tensor::data<float>();
template PD_DLL_DECL double *Tensor::data<double>();
template PD_DLL_DECL int64_t *Tensor::data<int64_t>();
template PD_DLL_DECL int32_t *Tensor::data<int32_t>();
template PD_DLL_DECL uint8_t *Tensor::data<uint8_t>();
template PD_DLL_DECL int8_t *Tensor::data<int8_t>();
template PD_DLL_DECL int16_t *Tensor::data<int16_t>();
template PD_DLL_DECL bool *Tensor::data<bool>();
template PD_DLL_DECL paddle::platform::complex<float>
    *Tensor::data<paddle::platform::complex<float>>();
template PD_DLL_DECL paddle::platform::complex<double>
    *Tensor::data<paddle::platform::complex<double>>();
template PD_DLL_DECL paddle::platform::float16 *
Tensor::data<paddle::platform::float16>();

254
// TODO(chenweihang): replace slice impl by API
255
Tensor Tensor::slice(const int64_t begin_idx, const int64_t end_idx) const {
256 257 258 259 260 261 262 263
  if (detail::IsDenseTensor(impl_)) {
    return Tensor(std::make_shared<pten::DenseTensor>(
        std::move(pten::CompatibleDenseTensorUtils::Slice(
            std::dynamic_pointer_cast<pten::DenseTensor>(impl_).get(),
            begin_idx,
            end_idx))));
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
264
        "Only support slice operation on DenseTensor now."));
265
  }
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
}

std::shared_ptr<pten::TensorBase> Tensor::impl() const { return impl_; }

void Tensor::set_impl(const std::shared_ptr<pten::TensorBase> &impl) {
  impl_ = impl;
}

#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
gpuStream_t Tensor::stream() const {
  return platform::stream::get_current_stream(-1)->raw_stream();
}
#endif

/* Part 5: Data Transform methods */

template <typename T>
Tensor Tensor::copy_to(const PlaceType &target_place) const {
284
  LOG(WARNING) << "The Tensor's `copy_to` method is deprecated since version "
285
                  "2.3, and will be removed in version 2.4, please use "
286
                  "`copy_to` method without template argument instead. "
287 288
                  "reason: copying a Tensor to another device does not need "
                  "to specify the data type template argument.";
289
  return copy_to(ConvertExtPlaceToBackend(target_place), /*blocking=*/false);
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
}

template PD_DLL_DECL Tensor
Tensor::copy_to<float>(const PlaceType &target_place) const;
template PD_DLL_DECL Tensor
Tensor::copy_to<double>(const PlaceType &target_place) const;
template PD_DLL_DECL Tensor
Tensor::copy_to<int64_t>(const PlaceType &target_place) const;
template PD_DLL_DECL Tensor
Tensor::copy_to<int32_t>(const PlaceType &target_place) const;
template PD_DLL_DECL Tensor
Tensor::copy_to<uint8_t>(const PlaceType &target_place) const;
template PD_DLL_DECL Tensor
Tensor::copy_to<int8_t>(const PlaceType &target_place) const;
template PD_DLL_DECL Tensor
Tensor::copy_to<int16_t>(const PlaceType &target_place) const;
template PD_DLL_DECL Tensor
Tensor::copy_to<bool>(const PlaceType &target_place) const;
template PD_DLL_DECL Tensor Tensor::copy_to<paddle::platform::complex<float>>(
    const PlaceType &target_place) const;
template PD_DLL_DECL Tensor Tensor::copy_to<paddle::platform::complex<double>>(
    const PlaceType &target_place) const;
template PD_DLL_DECL Tensor
Tensor::copy_to<paddle::platform::float16>(const PlaceType &target_place) const;

315 316
Tensor Tensor::copy_to(Backend backend, bool blocking) const {
  return experimental::copy_to(*this, backend, blocking);
317 318
}

319 320
Tensor Tensor::cast(DataType target_type) const {
  return experimental::cast(*this, target_type);
321 322 323 324 325 326
}

/* Part 6: Status utils methods */

bool Tensor::defined() const { return impl_ != nullptr; }

327
bool Tensor::initialized() const { return defined() && impl_->initialized(); }
328 329

bool Tensor::is_initialized() const {
330
  return defined() && impl_->initialized();
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
}

void Tensor::reset() { impl_.reset(); }

/* Part 7: Operator overloading */

Tensor &Tensor::operator=(const Tensor &x) & {
  impl_ = x.impl_;
  autograd_meta_ = x.autograd_meta_;
  return *this;
}

Tensor &Tensor::operator=(Tensor &&x) & {
  impl_ = std::move(x.impl_);
  autograd_meta_ = std::move(x.autograd_meta_);
  return *this;
}

AbstractAutogradMeta *Tensor::get_autograd_meta() const {
  return autograd_meta_.get();
}

void Tensor::set_autograd_meta(
    std::shared_ptr<AbstractAutogradMeta> autograd_meta) {
  autograd_meta_ = std::move(autograd_meta);
}

}  // namespace experimental
}  // namespace paddle