unique_consecutive_kernel.cu 2.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include "paddle/phi/kernels/unique_consecutive_kernel.h"
#include "paddle/phi/kernels/gpu/unique_consecutive_functor.h"

#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/errors.h"
#include "paddle/phi/core/kernel_registry.h"

namespace phi {

template <typename T, typename Context>
void UniqueConsecutiveKernel(const Context& dev_ctx,
                             const DenseTensor& x,
                             bool return_inverse,
                             bool return_counts,
                             const std::vector<int>& axis,
                             int dtype,
                             DenseTensor* out,
                             DenseTensor* index,
                             DenseTensor* counts) {
36 37
  auto data_type = var_type_map[dtype];
  if (data_type == phi::DataType::INT32) {
38 39 40 41 42 43 44 45 46 47 48 49
    PADDLE_ENFORCE_LE(
        x.numel() + 1,
        INT_MAX,
        phi::errors::InvalidArgument(
            "The number of elements in Input(X) should be less than or "
            "equal to INT_MAX, but received num is %d. Please set `dtype` to "
            "int64.",
            x.numel()));
  }

  // if 'axis' is not required, flatten the Tensor.
  if (axis.empty()) {
50
    phi::VisitDataTypeTiny(
51 52 53 54 55 56
        data_type,
        UniqueConsecutiveFlattenedCUDAFunctor<Context, T>(
            dev_ctx, x, out, return_inverse, return_counts, index, counts));
  } else {
    // 'axis' is required.
    int valid_axis = axis[0];
57
    phi::VisitDataTypeTiny(
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
        data_type,
        UniqueConsecutiveDimsCUDAFunctor<Context, T>(dev_ctx,
                                                     x,
                                                     out,
                                                     valid_axis,
                                                     return_inverse,
                                                     return_counts,
                                                     index,
                                                     counts));
  }
}

}  // namespace phi

PD_REGISTER_KERNEL(unique_consecutive,
                   GPU,
                   ALL_LAYOUT,
                   phi::UniqueConsecutiveKernel,
                   float,
                   double,
                   int32_t,
                   int64_t) {}