test_min_op.py 3.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np
from op_test import OpTest, skip_check_grad_ci
import paddle
import paddle.fluid.core as core


class ApiMinTest(unittest.TestCase):
    def setUp(self):
        if core.is_compiled_with_cuda():
            self.place = core.CUDAPlace(0)
        else:
            self.place = core.CPUPlace()

    def test_api(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program(),
                                         paddle.static.Program()):
35
            data = paddle.static.data("data", shape=[10, 10], dtype="float32")
36 37 38 39 40 41 42 43
            result_min = paddle.min(x=data, axis=1)
            exe = paddle.static.Executor(self.place)
            input_data = np.random.rand(10, 10).astype(np.float32)
            res, = exe.run(feed={"data": input_data}, fetch_list=[result_min])
        self.assertEqual((res == np.min(input_data, axis=1)).all(), True)

        with paddle.static.program_guard(paddle.static.Program(),
                                         paddle.static.Program()):
44
            data = paddle.static.data("data", shape=[10, 10], dtype="int64")
45 46 47 48 49 50
            result_min = paddle.min(x=data, axis=0)
            exe = paddle.static.Executor(self.place)
            input_data = np.random.randint(10, size=(10, 10)).astype(np.int64)
            res, = exe.run(feed={"data": input_data}, fetch_list=[result_min])
        self.assertEqual((res == np.min(input_data, axis=0)).all(), True)

51 52
        with paddle.static.program_guard(paddle.static.Program(),
                                         paddle.static.Program()):
53
            data = paddle.static.data("data", shape=[10, 10], dtype="int64")
54 55 56 57 58 59
            result_min = paddle.min(x=data, axis=(0, 1))
            exe = paddle.static.Executor(self.place)
            input_data = np.random.randint(10, size=(10, 10)).astype(np.int64)
            res, = exe.run(feed={"data": input_data}, fetch_list=[result_min])
        self.assertEqual((res == np.min(input_data, axis=(0, 1))).all(), True)

60 61 62 63 64 65 66 67 68 69 70
    def test_errors(self):
        paddle.enable_static()

        def test_input_type():
            with paddle.static.program_guard(paddle.static.Program(),
                                             paddle.static.Program()):
                data = np.random.rand(10, 10)
                result_min = paddle.min(x=data, axis=0)

        self.assertRaises(TypeError, test_input_type)

71 72 73
        def test_axis_type():
            with paddle.static.program_guard(paddle.static.Program(),
                                             paddle.static.Program()):
74 75
                data = paddle.static.data("data", shape=[10, 10], dtype="int64")
                axis = paddle.static.data("axis", shape=[10, 10], dtype="int64")
76 77 78 79
                result_min = paddle.min(data, axis)

        self.assertRaises(TypeError, test_axis_type)

80 81 82
    def test_imperative_api(self):
        paddle.disable_static()
        np_x = np.array([10, 10]).astype('float64')
Z
Zhou Wei 已提交
83
        x = paddle.to_tensor(np_x)
84 85 86 87
        z = paddle.min(x, axis=0)
        np_z = z.numpy()
        z_expected = np.array(np.min(np_x, axis=0))
        self.assertEqual((np_z == z_expected).all(), True)