test_recurrent_op.py 5.9 KB
Newer Older
Y
Yan Chunwei 已提交
1
import logging
Y
Yan Chunwei 已提交
2 3 4
import paddle.v2.framework.core as core
import unittest
import numpy as np
Y
Yan Chunwei 已提交
5
from paddle.v2.framework.op import Operator, RecurrentOp
S
init  
superjom 已提交
6
from gradient_checker import GradientChecker
Y
Yan Chunwei 已提交
7

S
superjom 已提交
8 9

def py_sigmoid(x):
S
superjom 已提交
10
    return 1. / (1. + np.exp(-x))
S
superjom 已提交
11

S
fix res  
superjom 已提交
12

S
superjom 已提交
13 14 15 16
class PySimpleRNN(object):
    '''
    A simple implementation of RNN based on numpy, to futhur test RecurrentOp's alogorithm
    '''
S
fix res  
superjom 已提交
17 18

    def __init__(self, input_dim=30, batch_size=50, weight_dim=15, sent_len=11):
S
superjom 已提交
19 20 21 22 23 24
        self.x = np.random.normal(size=(sent_len, batch_size, input_dim))
        self.W = np.random.normal(size=(input_dim, input_dim))
        self.U = np.random.normal(size=(input_dim, input_dim))
        self.h_boot = np.random.normal(size=(batch_size, input_dim))

        # memories
S
fix res  
superjom 已提交
25 26 27
        self.mems = [
            np.zeros(shape=(batch_size, input_dim)) for i in range(sent_len)
        ]
S
superjom 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46

    def forward(self):
        xs = self.segment_inputs()
        for step_id in range(self.x.shape[0]):
            self.step(step_id, xs[step_id])
        return self.concat_outputs()

    def segment_inputs(self):
        return [self.x[i] for i in range(self.x.shape[0])]

    def concat_outputs(self):
        return np.array(self.mems)

    def step(self, step_id, x):
        '''
        run a step
        '''
        mem = self.mems[step_id]
        if step_id > 0:
S
fix res  
superjom 已提交
47
            pre_mem = self.mems[step_id - 1]
S
superjom 已提交
48 49 50 51 52 53 54 55
        else:
            pre_mem = self.h_boot
        xW = np.matmul(x, self.W)
        hU = np.matmul(mem, self.U)

        sum = xW + hU
        self.mems[step_id] = py_sigmoid(sum)

S
fix res  
superjom 已提交
56

S
superjom 已提交
57 58 59 60 61 62 63
class PySimpleRNNTest(unittest.TestCase):
    def setUp(self):
        self.rnn = PySimpleRNN()

    def test_forward(self):
        output = self.rnn.forward()
        print 'output', output
Y
Yan Chunwei 已提交
64 65


S
superjom 已提交
66
def create_tensor(scope, name, shape, np_data):
Y
Yan Chunwei 已提交
67
    tensor = scope.new_var(name).get_tensor()
Y
Yan Chunwei 已提交
68
    tensor.set_dims(shape)
S
superjom 已提交
69
    tensor.set(np_data, core.CPUPlace())
Y
Yan Chunwei 已提交
70 71 72
    return tensor


S
init  
superjom 已提交
73
class RecurrentOpTest(unittest.TestCase):
Y
Yan Chunwei 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86
    '''
    Test RNNOp

    equation:
        h_t = \sigma (W x_t + U h_{t-1})
    weights:
        - W
        - U
    vars:
        - x
    memories:
        - h
    outputs:
S
superjom 已提交
87
       - h
Y
Yan Chunwei 已提交
88 89
    '''

Y
Yan Chunwei 已提交
90 91 92 93 94
    input_dim = 30
    batch_size = 50
    weight_dim = 15
    sent_len = 11

S
superjom 已提交
95
    def setUp(self):
S
fix res  
superjom 已提交
96 97
        self.py_rnn = PySimpleRNN(self.input_dim, self.batch_size,
                                  self.weight_dim, self.sent_len)
Y
Yan Chunwei 已提交
98

S
superjom 已提交
99 100
    def forward(self):
        self.scope = core.Scope()
Y
Yan Chunwei 已提交
101
        self.create_global_variables()
Y
Yan Chunwei 已提交
102
        self.create_rnn_op()
Y
Yan Chunwei 已提交
103 104
        self.create_step_net()
        ctx = core.DeviceContext.create(core.CPUPlace())
Y
Yan Chunwei 已提交
105 106
        self.rnnop.infer_shape(self.scope)
        self.rnnop.run(self.scope, ctx)
S
superjom 已提交
107
        return np.array(self.scope.find_var("h").get_tensor())
Y
Yan Chunwei 已提交
108 109 110

    def create_global_variables(self):
        # create inlink
S
superjom 已提交
111
        x_np_data = self.py_rnn.x
Y
Yan Chunwei 已提交
112
        create_tensor(self.scope, "x",
S
fix res  
superjom 已提交
113 114
                      [self.sent_len, self.batch_size, self.input_dim],
                      x_np_data)
S
superjom 已提交
115
        W_np_data = self.py_rnn.W
S
fix res  
superjom 已提交
116 117
        create_tensor(self.scope, "W", [self.input_dim, self.input_dim],
                      W_np_data)
S
superjom 已提交
118 119

        U_np_data = self.py_rnn.U
S
fix res  
superjom 已提交
120 121
        create_tensor(self.scope, "U", [self.input_dim, self.input_dim],
                      U_np_data)
S
superjom 已提交
122 123

        h_boot_np_data = self.py_rnn.h_boot
S
fix res  
superjom 已提交
124 125
        create_tensor(self.scope, "h_boot", [self.batch_size, self.input_dim],
                      h_boot_np_data)
Y
Yan Chunwei 已提交
126 127 128 129 130
        self.scope.new_var("step_scopes")
        self.scope.new_var("h@alias")
        self.scope.new_var("h")

    def create_rnn_op(self):
Y
Yan Chunwei 已提交
131
        # create RNNOp
Y
Yan Chunwei 已提交
132
        self.rnnop = RecurrentOp(
Y
Yan Chunwei 已提交
133 134 135 136 137
            # inputs
            inlinks=["x"],
            boot_memories=["h_boot"],
            step_net="stepnet",
            # outputs
Y
Yan Chunwei 已提交
138
            outlinks=["h"],
Y
Yan Chunwei 已提交
139 140 141
            step_scopes="step_scopes",
            # attributes
            inlink_alias=["x@alias"],
Y
Yan Chunwei 已提交
142 143 144 145 146
            outlink_alias=["h@alias"],
            pre_memories=["h@pre"],
            memories=["h@alias"])

    def create_step_net(self):
Y
Yan Chunwei 已提交
147
        stepnet = core.Net.create()
S
fix res  
superjom 已提交
148 149
        x_fc_op = Operator("mul", X="x@alias", Y="W", Out="Wx")
        h_fc_op = Operator("mul", X="h@pre", Y="U", Out="Uh")
S
superjom 已提交
150 151
        sum_op = Operator("add_two", X="Wx", Y="Uh", Out="sum")
        sig_op = Operator("sigmoid", X="sum", Y="h@alias")
Y
Yan Chunwei 已提交
152 153 154 155

        for op in [x_fc_op, h_fc_op, sum_op, sig_op]:
            stepnet.add_op(op)
        stepnet.complete_add_op(True)
Y
Yan Chunwei 已提交
156
        self.rnnop.set_stepnet(stepnet)
Y
Yan Chunwei 已提交
157

S
superjom 已提交
158 159
    def test_forward(self):
        print 'test recurrent op forward'
S
superjom 已提交
160 161 162 163 164 165
        pd_output = self.forward()
        py_output = self.py_rnn.forward()
        print 'pd_output', pd_output
        print
        print 'py_output', py_output
        self.assertEqual(pd_output.shape, py_output.shape)
Y
Yan Chunwei 已提交
166

S
fix res  
superjom 已提交
167

S
init  
superjom 已提交
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
class RecurrentGradientOpTest(unittest.TestCase):
    def create_forward_op(self):
        self.forward_op = RecurrentOp(
            # inputs
            inlinks=["x"],
            boot_memories=["h_boot"],
            step_net="stepnet",
            # outputs
            outlinks=["h"],
            step_scopes="step_scopes",
            # attributes
            inlink_alias=["x@alias"],
            outlink_alias=["h@alias"],
            pre_memories=["h@pre"],
            memories=["h@alias"])

        # create a stepnet for RNN
        stepnet = core.Net.create()
        x_fc_op = Operator("mul", X="x@alias", Y="W", Out="Wx")
        h_fc_op = Operator("mul", X="h@pre", Y="U", Out="Uh")
        sum_op = Operator("add_two", X="Wx", Y="Uh", Out="sum")
        sig_op = Operator("sigmoid", X="sum", Y="h@alias")

        for op in [x_fc_op, h_fc_op, sum_op, sig_op]:
            stepnet.add_op(op)
        stepnet.complete_add_op(True)
        self.forward_op.set_stepnet(stepnet)

    def create_gradient_op(self):
        a = set()
        backward_op = core.RecurrentOp.backward(self.forward_op, a)

    def test_grad(self):
        self.create_forward_op()
        self.create_gradient_op()


Y
Yan Chunwei 已提交
205 206
if __name__ == '__main__':
    unittest.main()