adamax_kernel.cu 5.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15 16
#include "paddle/phi/kernels/adamax_kernel.h"

17
#include "paddle/phi/backends/gpu/gpu_context.h"
18 19 20
#include "paddle/phi/backends/gpu/gpu_launch_config.h"
#include "paddle/phi/common/amp_type_traits.h"
#include "paddle/phi/core/dense_tensor.h"
21
#include "paddle/phi/core/kernel_registry.h"
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
namespace phi {
template <typename T, typename MT>
__global__ void AdamaxGPUKernel(const T* param,
                                const T* grad,
                                const MT* learning_rate,
                                const MT* moment,
                                const MT* inf_norm,
                                const MT* beta1_pow,
                                const MT* master_param,
                                MT d_beta1,
                                MT d_beta2,
                                MT d_epsilon,
                                int num,
                                T* param_out,
                                MT* moment_out,
                                MT* inf_norm_out,
                                MT* master_param_out) {
  int idx = blockIdx.x * blockDim.x + threadIdx.x;
40

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
  MT lr = static_cast<MT>(learning_rate[0]);
  MT d_pow = static_cast<MT>(beta1_pow[0]);
  MT one = static_cast<MT>(1.0f);
  auto l_r = lr / (one - d_pow);

  for (int index = idx; index < num; index += gridDim.x * blockDim.x) {
    // load and cast input to MT
    MT d_param =
        master_param ? master_param[index] : static_cast<MT>(param[index]);
    MT d_grad = static_cast<MT>(grad[index]);
    MT d_moment = static_cast<MT>(moment[index]);
    MT d_inf = static_cast<MT>(inf_norm[index]);
    // compute
    auto mom_out = d_beta1 * d_moment + (one - d_beta1) * d_grad;
    auto norm_out = std::max(std::abs(d_grad), d_beta2 * d_inf + d_epsilon);
    auto out_data = d_param - l_r * (mom_out / norm_out);
    // store
    param_out[index] = static_cast<T>(out_data);
    moment_out[index] = static_cast<T>(mom_out);
    inf_norm_out[index] = static_cast<T>(norm_out);

    if (master_param_out) {
      master_param_out[index] = out_data;
    }
  }
}

template <typename T, typename Context>
void AdamaxKernel(const Context& dev_ctx,
                  const DenseTensor& param,
                  const DenseTensor& grad,
                  const DenseTensor& learning_rate,
                  const DenseTensor& moment,
                  const DenseTensor& inf_norm,
                  const DenseTensor& beta1_pow,
                  const paddle::optional<DenseTensor>& master_param,
                  float beta1,
                  float beta2,
                  float epsilon,
                  bool multi_precision,
                  DenseTensor* param_out,
                  DenseTensor* moment_out,
                  DenseTensor* inf_norm_out,
                  DenseTensor* master_param_outs) {
  using MPDType = typename phi::dtype::template MPTypeTrait<T>::Type;
  T* param_out_data = dev_ctx.template Alloc<T>(param_out);
  MPDType* moment_out_data = dev_ctx.template Alloc<MPDType>(moment_out);
  MPDType* inf_norm_out_data = dev_ctx.template Alloc<MPDType>(inf_norm_out);
  const MPDType* master_in_data =
      multi_precision ? master_param->data<MPDType>() : nullptr;
  MPDType* master_out_data =
      multi_precision ? dev_ctx.template Alloc<MPDType>(master_param_outs)
                      : nullptr;
  PADDLE_ENFORCE_EQ(
      beta1_pow.numel(),
      1,
      errors::InvalidArgument("beta1 pow's size should be 1, but received "
                              "value is:%d.",
                              beta1_pow.numel()));

  MPDType beta1_ = static_cast<MPDType>(beta1);
  MPDType beta2_ = static_cast<MPDType>(beta2);
  MPDType epsilon_ = static_cast<MPDType>(epsilon);

  int numel = param.numel();
  auto config = phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, numel, 1);
  int grid = config.block_per_grid.x;
  int block = config.thread_per_block.x;
  auto stream = dev_ctx.stream();

  AdamaxGPUKernel<T, MPDType>
      <<<block, grid, 0, stream>>>(param.data<T>(),
                                   grad.data<T>(),
                                   learning_rate.data<MPDType>(),
                                   moment.data<MPDType>(),
                                   inf_norm.data<MPDType>(),
                                   beta1_pow.data<MPDType>(),
                                   master_in_data,
                                   beta1_,
                                   beta2_,
                                   epsilon_,
                                   numel,
                                   param_out_data,
                                   moment_out_data,
                                   inf_norm_out_data,
                                   master_out_data);
}
}  // namespace phi
PD_REGISTER_KERNEL(adamax,
                   GPU,
                   ALL_LAYOUT,
                   phi::AdamaxKernel,
                   float,
                   double,
                   phi::dtype::float16) {}