layers.html 212.2 KB
Newer Older
1 2


3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
  <meta charset="utf-8">
  
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  
  <title>Layers &mdash; PaddlePaddle  文档</title>
  

  
  

  

  
  
    
Y
Yu Yang 已提交
22

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
  

  
  
    <link rel="stylesheet" href="../../../_static/css/theme.css" type="text/css" />
  

  
  
        <link rel="index" title="索引"
              href="../../../genindex.html"/>
        <link rel="search" title="搜索" href="../../../search.html"/>
    <link rel="top" title="PaddlePaddle  文档" href="../../../index.html"/> 

  <link rel="stylesheet" href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" type="text/css" />
  <link rel="stylesheet" href="../../../_static/css/override.css" type="text/css" />
  <script>
  var _hmt = _hmt || [];
  (function() {
    var hm = document.createElement("script");
    hm.src = "//hm.baidu.com/hm.js?b9a314ab40d04d805655aab1deee08ba";
    var s = document.getElementsByTagName("script")[0]; 
    s.parentNode.insertBefore(hm, s);
  })();
  </script>

  

  
  <script src="../../../_static/js/modernizr.min.js"></script>

</head>

<body class="wy-body-for-nav" role="document">

  
  <header class="site-header">
    <div class="site-logo">
      <a href="/"><img src="../../../_static/images/PP_w.png"></a>
    </div>
    <div class="site-nav-links">
      <div class="site-menu">
        <a class="fork-on-github" href="https://github.com/PaddlePaddle/Paddle" target="_blank"><i class="fa fa-github"></i>Folk me on Github</a>
        <div class="language-switcher dropdown">
          <a type="button" data-toggle="dropdown">
            <span>English</span>
            <i class="fa fa-angle-up"></i>
            <i class="fa fa-angle-down"></i>
          </a>
          <ul class="dropdown-menu">
            <li><a href="/doc_cn">中文</a></li>
            <li><a href="/doc">English</a></li>
          </ul>
        </div>
        <ul class="site-page-links">
          <li><a href="/">Home</a></li>
        </ul>
      </div>
      <div class="doc-module">
        
        <ul>
<li class="toctree-l1"><a class="reference internal" href="../../../getstarted/index_cn.html">新手入门</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../howto/index_cn.html">进阶指南</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../index_cn.html">API</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../faq/index_cn.html">FAQ</a></li>
</ul>

        
<div role="search">
  <form id="rtd-search-form" class="wy-form" action="../../../search.html" method="get">
    <input type="text" name="q" placeholder="Search docs" />
    <input type="hidden" name="check_keywords" value="yes" />
    <input type="hidden" name="area" value="default" />
  </form>
</div>        
      </div>
    </div>
  </header>
  
  <div class="main-content-wrap">
Y
Yu Yang 已提交
103 104

    
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
    <nav class="doc-menu-vertical" role="navigation">
        
          
          <ul>
<li class="toctree-l1"><a class="reference internal" href="../../../getstarted/index_cn.html">新手入门</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../../getstarted/build_and_install/index_cn.html">安装与编译</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../../getstarted/build_and_install/docker_install_cn.html">PaddlePaddle的Docker容器使用方式</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../getstarted/build_and_install/ubuntu_install_cn.html">Ubuntu部署PaddlePaddle</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../getstarted/build_and_install/cmake/build_from_source_cn.html">PaddlePaddle的编译选项</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../../getstarted/concepts/use_concepts_cn.html">基本使用概念</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../../howto/index_cn.html">进阶指南</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../../howto/usage/cmd_parameter/index_cn.html">设置命令行参数</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../../howto/usage/cmd_parameter/use_case_cn.html">使用案例</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../howto/usage/cmd_parameter/arguments_cn.html">参数概述</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../howto/usage/cmd_parameter/detail_introduction_cn.html">细节描述</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../../howto/usage/cluster/cluster_train_cn.html">运行分布式训练</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../howto/usage/k8s/k8s_basis_cn.html">Kubernetes 简介</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../howto/usage/k8s/k8s_cn.html">Kubernetes单机训练</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../howto/usage/k8s/k8s_distributed_cn.html">Kubernetes分布式训练</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../howto/dev/write_docs_cn.html">如何贡献/修改文档</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../howto/dev/contribute_to_paddle_cn.html">如何贡献代码</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../howto/deep_model/rnn/index_cn.html">RNN相关模型</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../../howto/deep_model/rnn/recurrent_group_cn.html">Recurrent Group教程</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../howto/deep_model/rnn/hierarchical_layer_cn.html">支持双层序列作为输入的Layer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../howto/deep_model/rnn/hrnn_rnn_api_compare_cn.html">单双层RNN API对比介绍</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../../howto/optimization/gpu_profiling_cn.html">GPU性能分析与调优</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../index_cn.html">API</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../v2/model_configs.html">模型配置</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../v2/config/activation.html">Activation</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../v2/config/layer.html">Layers</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../v2/config/optimizer.html">Optimizer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../v2/config/pooling.html">Pooling</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../v2/config/networks.html">Networks</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../v2/config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../v2/data.html">数据访问</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../v2/run_logic.html">训练与应用</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../../faq/index_cn.html">FAQ</a></li>
</ul>

        
    </nav>
Y
Yu Yang 已提交
160
    
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
    <section class="doc-content-wrap">

      

 







<div role="navigation" aria-label="breadcrumbs navigation">
  <ul class="wy-breadcrumbs">
      
    <li>Layers</li>
  </ul>
</div>
      
      <div class="wy-nav-content" id="doc-content">
        <div class="rst-content">
          <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
           <div itemprop="articleBody">
Y
Yu Yang 已提交
184
            
185
  <div class="section" id="layers">
186
<span id="api-trainer-config-helpers-layers"></span><h1>Layers<a class="headerlink" href="#layers" title="永久链接至标题"></a></h1>
187
<div class="section" id="base">
188
<h2>Base<a class="headerlink" href="#base" title="永久链接至标题"></a></h2>
Y
Yu Yang 已提交
189
<div class="section" id="layertype">
190
<h3>LayerType<a class="headerlink" href="#layertype" title="永久链接至标题"></a></h3>
Y
Yu Yang 已提交
191 192 193 194 195 196 197 198 199 200 201 202
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.trainer_config_helpers.layers.</code><code class="descname">LayerType</code></dt>
<dd><p>Layer type enumerations.</p>
<dl class="staticmethod">
<dt>
<em class="property">static </em><code class="descname">is_layer_type</code><span class="sig-paren">(</span><em>type_name</em><span class="sig-paren">)</span></dt>
<dd><p>If type_name is a layer type.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
203
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><strong>type_name</strong> (<em>basestring</em>) &#8211; layer type name. Because layer type enumerations are
Y
Yu Yang 已提交
204 205
strings.</td>
</tr>
206
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body">True if is a layer_type</td>
Y
Yu Yang 已提交
207
</tr>
208
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body">bool</td>
Y
Yu Yang 已提交
209 210 211 212 213 214 215 216 217
</tr>
</tbody>
</table>
</dd></dl>

</dd></dl>

</div>
<div class="section" id="layeroutput">
218
<h3>LayerOutput<a class="headerlink" href="#layeroutput" title="永久链接至标题"></a></h3>
Y
Yu Yang 已提交
219 220
<dl class="class">
<dt>
221
<em class="property">class </em><code class="descclassname">paddle.trainer_config_helpers.layers.</code><code class="descname">LayerOutput</code><span class="sig-paren">(</span><em>name</em>, <em>layer_type</em>, <em>parents=None</em>, <em>activation=None</em>, <em>num_filters=None</em>, <em>img_norm_type=None</em>, <em>size=None</em>, <em>outputs=None</em>, <em>reverse=None</em><span class="sig-paren">)</span></dt>
Y
Yu Yang 已提交
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
<dd><p>LayerOutput is output for layer function. It is used internally by several
reasons.</p>
<ul>
<li><p class="first">Check layer connection make sense.</p>
<blockquote>
<div><ul class="simple">
<li>FC(Softmax) =&gt; Cost(MSE Error) is not good for example.</li>
</ul>
</div></blockquote>
</li>
<li><p class="first">Tracking layer connection.</p>
</li>
<li><p class="first">Pass to layer methods as input.</p>
</li>
</ul>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
241
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first last simple">
Y
Yu Yang 已提交
242 243 244
<li><strong>name</strong> (<em>basestring</em>) &#8211; Layer output name.</li>
<li><strong>layer_type</strong> (<em>basestring</em>) &#8211; Current Layer Type. One of LayerType enumeration.</li>
<li><strong>activation</strong> (<em>BaseActivation.</em>) &#8211; Layer Activation.</li>
245
<li><strong>parents</strong> (<em>list|tuple|collections.Sequence</em>) &#8211; Layer&#8217;s parents.</li>
Y
Yu Yang 已提交
246 247 248 249 250
</ul>
</td>
</tr>
</tbody>
</table>
251 252 253 254 255 256
<dl class="method">
<dt>
<code class="descname">set_input</code><span class="sig-paren">(</span><em>input</em><span class="sig-paren">)</span></dt>
<dd><p>Set the input for a memory layer. Can only be used for memory layer</p>
</dd></dl>

Y
Yu Yang 已提交
257 258 259 260 261
</dd></dl>

</div>
</div>
<div class="section" id="data-layer">
262 263 264
<h2>Data layer<a class="headerlink" href="#data-layer" title="永久链接至标题"></a></h2>
<div class="section" id="api-trainer-config-helpers-layers-data-layer">
<span id="id1"></span><h3>data_layer<a class="headerlink" href="#api-trainer-config-helpers-layers-data-layer" title="永久链接至标题"></a></h3>
Y
Yu Yang 已提交
265 266 267 268 269
<dl class="function">
<dt>
<code class="descclassname">paddle.trainer_config_helpers.layers.</code><code class="descname">data_layer</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Define DataLayer For NeuralNetwork.</p>
<p>The example usage is:</p>
270
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">data</span> <span class="o">=</span> <span class="n">data_layer</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s2">&quot;input&quot;</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="mi">1000</span><span class="p">)</span>
Y
Yu Yang 已提交
271 272 273 274 275 276
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
277
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
Y
Yu Yang 已提交
278 279
<li><strong>name</strong> (<em>basestring</em>) &#8211; Name of this data layer.</li>
<li><strong>size</strong> (<em>int</em>) &#8211; Size of this data layer.</li>
280 281
<li><strong>height</strong> (<em>int|None</em>) &#8211; Height of this data layer, used for image</li>
<li><strong>width</strong> (<em>int|None</em>) &#8211; Width of this data layer, used for image</li>
Y
Yu Yang 已提交
282 283 284 285
<li><strong>layer_attr</strong> (<em>ExtraLayerAttribute.</em>) &#8211; Extra Layer Attribute.</li>
</ul>
</td>
</tr>
286
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">LayerOutput object.</p>
Y
Yu Yang 已提交
287 288
</td>
</tr>
289
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
Y
Yu Yang 已提交
290 291 292 293 294 295 296 297 298
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
</div>
<div class="section" id="fully-connected-layers">
299
<h2>Fully Connected Layers<a class="headerlink" href="#fully-connected-layers" title="永久链接至标题"></a></h2>
Y
Yu Yang 已提交
300
<div class="section" id="fc-layer">
301
<span id="api-trainer-config-helpers-layers-fc-layer"></span><h3>fc_layer<a class="headerlink" href="#fc-layer" title="永久链接至标题"></a></h3>
Y
Yu Yang 已提交
302 303 304
<dl class="function">
<dt>
<code class="descclassname">paddle.trainer_config_helpers.layers.</code><code class="descname">fc_layer</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
Y
Yu Yang 已提交
305
<dd><p>Helper for declare fully connected layer.</p>
Y
Yu Yang 已提交
306 307 308 309 310 311 312 313
<p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">fc</span> <span class="o">=</span> <span class="n">fc_layer</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">layer</span><span class="p">,</span>
              <span class="n">size</span><span class="o">=</span><span class="mi">1024</span><span class="p">,</span>
              <span class="n">act</span><span class="o">=</span><span class="n">LinearActivation</span><span class="p">(),</span>
              <span class="n">bias_attr</span><span class="o">=</span><span class="bp">False</span><span class="p">)</span>
</pre></div>
</div>
<p>which is equal to:</p>
Y
Yu Yang 已提交
314
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="k">with</span> <span class="n">mixed_layer</span><span class="p">(</span><span class="n">size</span><span class="o">=</span><span class="mi">1024</span><span class="p">)</span> <span class="k">as</span> <span class="n">fc</span><span class="p">:</span>
Y
Yu Yang 已提交
315 316 317 318 319 320 321
    <span class="n">fc</span> <span class="o">+=</span> <span class="n">full_matrix_projection</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">layer</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
322
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
Y
Yu Yang 已提交
323 324 325 326 327 328
<li><strong>name</strong> (<em>basestring</em>) &#8211; The Layer Name.</li>
<li><strong>input</strong> (<em>LayerOutput|list|tuple</em>) &#8211; The input layer. Could be a list/tuple of input layer.</li>
<li><strong>size</strong> (<em>int</em>) &#8211; The layer dimension.</li>
<li><strong>act</strong> (<em>BaseActivation</em>) &#8211; Activation Type. Default is tanh.</li>
<li><strong>param_attr</strong> (<a class="reference internal" href="attrs.html#paddle.trainer_config_helpers.attrs.ParameterAttribute" title="paddle.trainer_config_helpers.attrs.ParameterAttribute"><em>ParameterAttribute</em></a>) &#8211; The Parameter Attribute|list.</li>
<li><strong>bias_attr</strong> (<em>ParameterAttribute|None|Any</em>) &#8211; The Bias Attribute. If no bias, then pass False or
Y
Yu Yang 已提交
329
something not type of ParameterAttribute. None will get a
Y
Yu Yang 已提交
330 331 332 333
default Bias.</li>
<li><strong>layer_attr</strong> (<em>ExtraLayerAttribute|None</em>) &#8211; Extra Layer config.</li>
</ul>
</td>
Y
Yu Yang 已提交
334
</tr>
335
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">LayerOutput object.</p>
Y
Yu Yang 已提交
336
</td>
Y
Yu Yang 已提交
337
</tr>
338
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
Y
Yu Yang 已提交
339
</td>
Y
Yu Yang 已提交
340 341 342 343 344 345 346
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="selective-fc-layer">
347
<h3>selective_fc_layer<a class="headerlink" href="#selective-fc-layer" title="永久链接至标题"></a></h3>
Y
Yu Yang 已提交
348 349 350 351 352 353 354 355
<dl class="function">
<dt>
<code class="descclassname">paddle.trainer_config_helpers.layers.</code><code class="descname">selective_fc_layer</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Selectived fully connected layer. Different from fc_layer, the output
of this layer maybe sparse. It requires an additional input to indicate
several selected columns for output. If the selected columns is not
specified, selective_fc_layer acts exactly like fc_layer.</p>
<p>The simple usage is:</p>
356
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">sel_fc</span> <span class="o">=</span> <span class="n">selective_fc_layer</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="nb">input</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="mi">128</span><span class="p">,</span> <span class="n">act</span><span class="o">=</span><span class="n">TanhActivation</span><span class="p">())</span>
Y
Yu Yang 已提交
357 358 359 360 361 362
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
363
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
Y
Yu Yang 已提交
364 365
<li><strong>name</strong> (<em>basestring</em>) &#8211; The Layer Name.</li>
<li><strong>input</strong> (<em>LayerOutput|list|tuple</em>) &#8211; The input layer.</li>
366
<li><strong>select</strong> (<em>LayerOutput</em>) &#8211; The select layer. The output of select layer should be a
367 368
sparse binary matrix, and treat as the mask of selective fc.
If is None, acts exactly like fc_layer.</li>
Y
Yu Yang 已提交
369
<li><strong>size</strong> (<em>int</em>) &#8211; The layer dimension.</li>
Y
Yu Yang 已提交
370
<li><strong>act</strong> (<em>BaseActivation</em>) &#8211; Activation Type. Default is tanh.</li>
Y
Yu Yang 已提交
371 372 373 374 375 376 377 378
<li><strong>param_attr</strong> (<a class="reference internal" href="attrs.html#paddle.trainer_config_helpers.attrs.ParameterAttribute" title="paddle.trainer_config_helpers.attrs.ParameterAttribute"><em>ParameterAttribute</em></a>) &#8211; The Parameter Attribute.</li>
<li><strong>bias_attr</strong> (<em>ParameterAttribute|None|Any</em>) &#8211; The Bias Attribute. If no bias, then pass False or
something not type of ParameterAttribute. None will get a
default Bias.</li>
<li><strong>layer_attr</strong> (<em>ExtraLayerAttribute|None</em>) &#8211; Extra Layer config.</li>
</ul>
</td>
</tr>
379
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">LayerOutput object.</p>
Y
Yu Yang 已提交
380 381
</td>
</tr>
382
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
Y
Yu Yang 已提交
383 384 385 386 387 388 389 390 391
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
</div>
<div class="section" id="conv-layers">
392
<h2>Conv Layers<a class="headerlink" href="#conv-layers" title="永久链接至标题"></a></h2>
Y
Yu Yang 已提交
393
<div class="section" id="conv-operator">
394
<h3>conv_operator<a class="headerlink" href="#conv-operator" title="永久链接至标题"></a></h3>
Y
Yu Yang 已提交
395 396
<dl class="function">
<dt>
397
<code class="descclassname">paddle.trainer_config_helpers.layers.</code><code class="descname">conv_operator</code><span class="sig-paren">(</span><em>img</em>, <em>filter</em>, <em>filter_size</em>, <em>num_filters</em>, <em>num_channels=None</em>, <em>stride=1</em>, <em>padding=0</em>, <em>filter_size_y=None</em>, <em>stride_y=None</em>, <em>padding_y=None</em>, <em>trans=False</em><span class="sig-paren">)</span></dt>
Y
Yu Yang 已提交
398 399 400 401 402
<dd><p>Different from img_conv_layer, conv_op is an Operator, which can be used
in mixed_layer. And conv_op takes two inputs to perform convolution.
The first input is the image and the second is filter kernel. It only
support GPU mode.</p>
<p>The example usage is:</p>
403 404
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">op</span> <span class="o">=</span> <span class="n">conv_operator</span><span class="p">(</span><span class="n">img</span><span class="o">=</span><span class="n">input1</span><span class="p">,</span>
                   <span class="nb">filter</span><span class="o">=</span><span class="n">input2</span><span class="p">,</span>
405
                   <span class="n">filter_size</span><span class="o">=</span><span class="mi">3</span><span class="p">,</span>
Y
Yu Yang 已提交
406 407 408 409 410 411 412 413
                   <span class="n">num_filters</span><span class="o">=</span><span class="mi">64</span><span class="p">,</span>
                   <span class="n">num_channels</span><span class="o">=</span><span class="mi">64</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
414
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
415 416
<li><strong>img</strong> (<em>LayerOutput</em>) &#8211; input image</li>
<li><strong>filter</strong> (<em>LayerOutput</em>) &#8211; input filter</li>
Y
Yu Yang 已提交
417
<li><strong>filter_size</strong> (<em>int</em>) &#8211; The x dimension of a filter kernel.</li>
Y
Yu Yang 已提交
418 419 420
<li><strong>filter_size_y</strong> (<em>int</em>) &#8211; The y dimension of a filter kernel. Since
PaddlePaddle now supports rectangular filters,
the filter&#8217;s shape can be (filter_size, filter_size_y).</li>
421
<li><strong>num_filters</strong> (<em>int</em>) &#8211; channel of output data.</li>
422
<li><strong>num_channels</strong> (<em>int</em>) &#8211; channel of input data.</li>
Y
Yu Yang 已提交
423 424
<li><strong>stride</strong> (<em>int</em>) &#8211; The x dimension of the stride.</li>
<li><strong>stride_y</strong> (<em>int</em>) &#8211; The y dimension of the stride.</li>
Y
Yu Yang 已提交
425 426 427 428 429
<li><strong>padding</strong> (<em>int</em>) &#8211; The x dimension of padding.</li>
<li><strong>padding_y</strong> (<em>int</em>) &#8211; The y dimension of padding.</li>
</ul>
</td>
</tr>
430
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">A ConvOperator Object.</p>
Y
Yu Yang 已提交
431 432
</td>
</tr>
433
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">ConvOperator</p>
Y
Yu Yang 已提交
434 435 436 437 438 439
</td>
</tr>
</tbody>
</table>
</dd></dl>

440 441
</div>
<div class="section" id="conv-projection">
442
<h3>conv_projection<a class="headerlink" href="#conv-projection" title="永久链接至标题"></a></h3>
443 444 445
<dl class="function">
<dt>
<code class="descclassname">paddle.trainer_config_helpers.layers.</code><code class="descname">conv_projection</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
446
<dd><p>Different from img_conv_layer and conv_op, conv_projection is an Projection,
447 448 449
which can be used in mixed_layer and conat_layer. It use cudnn to implement
conv and only support GPU mode.</p>
<p>The example usage is:</p>
450
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">proj</span> <span class="o">=</span> <span class="n">conv_projection</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">input1</span><span class="p">,</span>
451 452 453 454 455 456 457 458 459
                       <span class="n">filter_size</span><span class="o">=</span><span class="mi">3</span><span class="p">,</span>
                       <span class="n">num_filters</span><span class="o">=</span><span class="mi">64</span><span class="p">,</span>
                       <span class="n">num_channels</span><span class="o">=</span><span class="mi">64</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
460
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
461 462 463 464 465 466 467 468 469 470 471 472 473
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; input layer</li>
<li><strong>filter_size</strong> (<em>int</em>) &#8211; The x dimension of a filter kernel.</li>
<li><strong>filter_size_y</strong> (<em>int</em>) &#8211; The y dimension of a filter kernel. Since
PaddlePaddle now supports rectangular filters,
the filter&#8217;s shape can be (filter_size, filter_size_y).</li>
<li><strong>num_filters</strong> (<em>int</em>) &#8211; channel of output data.</li>
<li><strong>num_channels</strong> (<em>int</em>) &#8211; channel of input data.</li>
<li><strong>stride</strong> (<em>int</em>) &#8211; The x dimension of the stride.</li>
<li><strong>stride_y</strong> (<em>int</em>) &#8211; The y dimension of the stride.</li>
<li><strong>padding</strong> (<em>int</em>) &#8211; The x dimension of padding.</li>
<li><strong>padding_y</strong> (<em>int</em>) &#8211; The y dimension of padding.</li>
<li><strong>groups</strong> (<em>int</em>) &#8211; The group number.</li>
<li><strong>param_attr</strong> (<a class="reference internal" href="attrs.html#paddle.trainer_config_helpers.attrs.ParameterAttribute" title="paddle.trainer_config_helpers.attrs.ParameterAttribute"><em>ParameterAttribute</em></a>) &#8211; Convolution param attribute. None means default attribute</li>
474
<li><strong>trans</strong> (<em>boolean</em>) &#8211; whether it is convTrans or conv</li>
475 476 477
</ul>
</td>
</tr>
478
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">A DotMulProjection Object.</p>
479 480
</td>
</tr>
481
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">DotMulProjection</p>
482 483 484 485 486 487
</td>
</tr>
</tbody>
</table>
</dd></dl>

Y
Yu Yang 已提交
488 489
</div>
<div class="section" id="conv-shift-layer">
490
<h3>conv_shift_layer<a class="headerlink" href="#conv-shift-layer" title="永久链接至标题"></a></h3>
Y
Yu Yang 已提交
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
<dl class="function">
<dt>
<code class="descclassname">paddle.trainer_config_helpers.layers.</code><code class="descname">conv_shift_layer</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><dl class="docutils">
<dt>This layer performs cyclic convolution for two input. For example:</dt>
<dd><ul class="first last simple">
<li>a[in]: contains M elements.</li>
<li>b[in]: contains N elements (N should be odd).</li>
<li>c[out]: contains M elements.</li>
</ul>
</dd>
</dl>
<div class="math">
\[c[i] = \sum_{j=-(N-1)/2}^{(N-1)/2}a_{i+j} * b_{j}\]</div>
<dl class="docutils">
<dt>In this formular:</dt>
<dd><ul class="first last simple">
508 509 510 511
<li>a&#8217;s index is computed modulo M. When it is negative, then get item from
the right side (which is the end of array) to the left.</li>
<li>b&#8217;s index is computed modulo N. When it is negative, then get item from
the right size (which is the end of array) to the left.</li>
Y
Yu Yang 已提交
512 513 514 515
</ul>
</dd>
</dl>
<p>The example usage is:</p>
516
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">conv_shift</span> <span class="o">=</span> <span class="n">conv_shift_layer</span><span class="p">(</span><span class="n">a</span><span class="o">=</span><span class="n">layer1</span><span class="p">,</span> <span class="n">b</span><span class="o">=</span><span class="n">layer2</span><span class="p">)</span>
Y
Yu Yang 已提交
517 518 519 520 521 522
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
523
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
Y
Yu Yang 已提交
524
<li><strong>name</strong> (<em>basestring</em>) &#8211; layer name</li>
525
<li><strong>a</strong> (<em>LayerOutput</em>) &#8211; Input layer a.</li>
526
<li><strong>b</strong> (<em>LayerOutput</em>) &#8211; input layer b.</li>
527
<li><strong>layer_attr</strong> (<a class="reference internal" href="attrs.html#paddle.trainer_config_helpers.attrs.ExtraLayerAttribute" title="paddle.trainer_config_helpers.attrs.ExtraLayerAttribute"><em>ExtraLayerAttribute</em></a>) &#8211; layer&#8217;s extra attribute.</li>
Y
Yu Yang 已提交
528 529 530
</ul>
</td>
</tr>
531
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">LayerOutput object.</p>
Y
Yu Yang 已提交
532 533
</td>
</tr>
534
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
Y
Yu Yang 已提交
535 536 537 538 539 540 541 542
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="img-conv-layer">
543
<h3>img_conv_layer<a class="headerlink" href="#img-conv-layer" title="永久链接至标题"></a></h3>
Y
Yu Yang 已提交
544 545 546
<dl class="function">
<dt>
<code class="descclassname">paddle.trainer_config_helpers.layers.</code><code class="descname">img_conv_layer</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
547 548
<dd><p>Convolution layer for image. Paddle can support both square and non-square
input currently.</p>
Y
Yu Yang 已提交
549
<p>The details of convolution layer, please refer UFLDL&#8217;s <a class="reference external" href="http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/">convolution</a> .</p>
550 551
<p>Convolution Transpose (deconv) layer for image. Paddle can support both square
and non-square input currently.</p>
552 553 554 555 556
<p>The details of convolution transpose layer,
please refer to the following explanation and references therein
&lt;<a class="reference external" href="http://datascience.stackexchange.com/questions/6107/">http://datascience.stackexchange.com/questions/6107/</a>
what-are-deconvolutional-layers/&gt;`_ .
The num_channel means input image&#8217;s channel number. It may be 1 or 3 when
Y
Yu Yang 已提交
557 558
input is raw pixels of image(mono or RGB), or it may be the previous layer&#8217;s
num_filters * num_group.</p>
Y
Yu Yang 已提交
559 560 561
<p>There are several group of filter in PaddlePaddle implementation.
Each group will process some channel of the inputs. For example, if an input
num_channel = 256, group = 4, num_filter=32, the PaddlePaddle will create
Y
Yu Yang 已提交
562
32*4 = 128 filters to process inputs. The channels will be split into 4
Y
Yu Yang 已提交
563 564
pieces. First 256/4 = 64 channels will process by first 32 filters. The
rest channels will be processed by rest group of filters.</p>
565 566 567 568 569 570 571 572
<p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">conv</span> <span class="o">=</span> <span class="n">img_conv_layer</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">data</span><span class="p">,</span> <span class="n">filter_size</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">filter_size_y</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
                      <span class="n">num_channels</span><span class="o">=</span><span class="mi">8</span><span class="p">,</span>
                      <span class="n">num_filters</span><span class="o">=</span><span class="mi">16</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
                      <span class="n">bias_attr</span><span class="o">=</span><span class="bp">False</span><span class="p">,</span>
                      <span class="n">act</span><span class="o">=</span><span class="n">ReluActivation</span><span class="p">())</span>
</pre></div>
</div>
Y
Yu Yang 已提交
573 574 575 576
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
577
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
Y
Yu Yang 已提交
578 579
<li><strong>name</strong> (<em>basestring</em>) &#8211; Layer name.</li>
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; Layer Input.</li>
580 581 582
<li><strong>filter_size</strong> (<em>int|tuple|list</em>) &#8211; The x dimension of a filter kernel. Or input a tuple for
two image dimension.</li>
<li><strong>filter_size_y</strong> (<em>int|None</em>) &#8211; The y dimension of a filter kernel. Since PaddlePaddle
Y
Yu Yang 已提交
583 584
currently supports rectangular filters, the filter&#8217;s
shape will be (filter_size, filter_size_y).</li>
Y
Yu Yang 已提交
585
<li><strong>num_filters</strong> &#8211; Each filter group&#8217;s number of filter</li>
Y
Yu Yang 已提交
586
<li><strong>act</strong> (<em>BaseActivation</em>) &#8211; Activation type. Default is tanh</li>
Y
Yu Yang 已提交
587
<li><strong>groups</strong> (<em>int</em>) &#8211; Group size of filters.</li>
588 589
<li><strong>stride</strong> (<em>int|tuple|list</em>) &#8211; The x dimension of the stride. Or input a tuple for two image
dimension.</li>
Y
Yu Yang 已提交
590
<li><strong>stride_y</strong> (<em>int</em>) &#8211; The y dimension of the stride.</li>
591 592
<li><strong>padding</strong> (<em>int|tuple|list</em>) &#8211; The x dimension of the padding. Or input a tuple for two
image dimension</li>
Y
Yu Yang 已提交
593 594 595 596 597 598 599 600
<li><strong>padding_y</strong> (<em>int</em>) &#8211; The y dimension of the padding.</li>
<li><strong>bias_attr</strong> (<em>ParameterAttribute|False</em>) &#8211; Convolution bias attribute. None means default bias.
False means no bias.</li>
<li><strong>num_channels</strong> (<em>int</em>) &#8211; number of input channels. If None will be set
automatically from previous output.</li>
<li><strong>param_attr</strong> (<a class="reference internal" href="attrs.html#paddle.trainer_config_helpers.attrs.ParameterAttribute" title="paddle.trainer_config_helpers.attrs.ParameterAttribute"><em>ParameterAttribute</em></a>) &#8211; Convolution param attribute. None means default attribute</li>
<li><strong>shared_biases</strong> (<em>bool</em>) &#8211; Is biases will be shared between filters or not.</li>
<li><strong>layer_attr</strong> (<a class="reference internal" href="attrs.html#paddle.trainer_config_helpers.attrs.ExtraLayerAttribute" title="paddle.trainer_config_helpers.attrs.ExtraLayerAttribute"><em>ExtraLayerAttribute</em></a>) &#8211; Layer Extra Attribute.</li>
601
<li><strong>trans</strong> (<em>bool</em>) &#8211; true if it is a convTransLayer, false if it is a convLayer</li>
602 603 604 605
<li><strong>layer_type</strong> (<em>String</em>) &#8211; specify the layer_type, default is None. If trans=True,
layer_type has to be &#8220;exconvt&#8221; or &#8220;cudnn_convt&#8221;,
otherwise layer_type has to be either &#8220;exconv&#8221; or
&#8220;cudnn_conv&#8221;</li>
Y
Yu Yang 已提交
606 607 608
</ul>
</td>
</tr>
609
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">LayerOutput object.</p>
Y
Yu Yang 已提交
610 611
</td>
</tr>
612
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
Y
Yu Yang 已提交
613 614 615 616 617 618 619 620
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="context-projection">
621
<span id="api-trainer-config-helpers-layers-context-projection"></span><h3>context_projection<a class="headerlink" href="#context-projection" title="永久链接至标题"></a></h3>
Y
Yu Yang 已提交
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
<dl class="function">
<dt>
<code class="descclassname">paddle.trainer_config_helpers.layers.</code><code class="descname">context_projection</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Context Projection.</p>
<p>It just simply reorganizes input sequence, combines &#8220;context_len&#8221; sequence
to one context from context_start. &#8220;context_start&#8221; will be set to
-(context_len - 1) / 2 by default. If context position out of sequence
length, padding will be filled as zero if padding_attr = False, otherwise
it is trainable.</p>
<p>For example, origin sequence is [A B C D E F G], context len is 3, then
after context projection and not set padding_attr, sequence will
be [ 0AB ABC BCD CDE DEF EFG FG0 ].</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
638
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
Y
Yu Yang 已提交
639 640 641 642 643 644 645 646 647 648
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; Input Sequence.</li>
<li><strong>context_len</strong> (<em>int</em>) &#8211; context length.</li>
<li><strong>context_start</strong> (<em>int</em>) &#8211; context start position. Default is
-(context_len - 1)/2</li>
<li><strong>padding_attr</strong> (<em>bool|ParameterAttribute</em>) &#8211; Padding Parameter Attribute. If false, it means padding
always be zero. Otherwise Padding is learnable, and
parameter attribute is set by this parameter.</li>
</ul>
</td>
</tr>
649
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">Projection</p>
Y
Yu Yang 已提交
650 651
</td>
</tr>
652
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">Projection</p>
Y
Yu Yang 已提交
653 654 655 656 657 658 659 660 661
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
</div>
<div class="section" id="image-pooling-layer">
662
<h2>Image Pooling Layer<a class="headerlink" href="#image-pooling-layer" title="永久链接至标题"></a></h2>
Y
Yu Yang 已提交
663
<div class="section" id="img-pool-layer">
664
<h3>img_pool_layer<a class="headerlink" href="#img-pool-layer" title="永久链接至标题"></a></h3>
Y
Yu Yang 已提交
665 666 667 668 669
<dl class="function">
<dt>
<code class="descclassname">paddle.trainer_config_helpers.layers.</code><code class="descname">img_pool_layer</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Image pooling Layer.</p>
<p>The details of pooling layer, please refer ufldl&#8217;s <a class="reference external" href="http://ufldl.stanford.edu/tutorial/supervised/Pooling/">pooling</a> .</p>
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
<ul class="simple">
<li>ceil_mode=True:</li>
</ul>
<div class="math">
\[w = 1 + int(ceil(input\_width + 2 * padding - pool\_size) / float(stride))
h = 1 + int(ceil(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))\]</div>
<ul class="simple">
<li>ceil_mode=False:</li>
</ul>
<div class="math">
\[w = 1 + int(floor(input\_width + 2 * padding - pool\_size) / float(stride))
h = 1 + int(floor(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))\]</div>
<p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">maxpool</span> <span class="o">=</span> <span class="n">img_pool_layer</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">conv</span><span class="p">,</span>
                         <span class="n">pool_size</span><span class="o">=</span><span class="mi">3</span><span class="p">,</span>
                         <span class="n">pool_size_y</span><span class="o">=</span><span class="mi">5</span><span class="p">,</span>
                         <span class="n">num_channels</span><span class="o">=</span><span class="mi">8</span><span class="p">,</span>
                         <span class="n">stride</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
                         <span class="n">stride_y</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span>
                         <span class="n">padding</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
                         <span class="n">padding_y</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span>
                         <span class="n">pool_type</span><span class="o">=</span><span class="n">MaxPooling</span><span class="p">())</span>
</pre></div>
</div>
Y
Yu Yang 已提交
694 695 696 697
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
698
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
699 700
<li><strong>padding</strong> (<em>int</em>) &#8211; pooling padding width.</li>
<li><strong>padding_y</strong> (<em>int|None</em>) &#8211; pooling padding height. It&#8217;s equal to padding by default.</li>
Y
Yu Yang 已提交
701 702
<li><strong>name</strong> (<em>basestring.</em>) &#8211; name of pooling layer</li>
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; layer&#8217;s input</li>
703 704
<li><strong>pool_size</strong> (<em>int</em>) &#8211; pooling window width</li>
<li><strong>pool_size_y</strong> (<em>int|None</em>) &#8211; pooling window height. It&#8217;s eaqual to pool_size by default.</li>
Y
Yu Yang 已提交
705
<li><strong>num_channels</strong> (<em>int</em>) &#8211; number of input channel.</li>
706
<li><strong>pool_type</strong> (<em>BasePoolingType</em>) &#8211; pooling type. MaxPooling or AvgPooling. Default is
Y
Yu Yang 已提交
707
MaxPooling.</li>
708 709 710
<li><strong>stride</strong> (<em>int</em>) &#8211; stride width of pooling.</li>
<li><strong>stride_y</strong> (<em>int|None</em>) &#8211; stride height of pooling. It is equal to stride by default.</li>
<li><strong>layer_attr</strong> (<a class="reference internal" href="attrs.html#paddle.trainer_config_helpers.attrs.ExtraLayerAttribute" title="paddle.trainer_config_helpers.attrs.ExtraLayerAttribute"><em>ExtraLayerAttribute</em></a>) &#8211; Extra Layer attribute.</li>
711 712
<li><strong>ceil_mode</strong> (<em>bool</em>) &#8211; Wether to use ceil mode to calculate output height and with.
Defalut is True. If set false, Otherwise use floor.</li>
713 714 715
</ul>
</td>
</tr>
716
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">LayerOutput object.</p>
717 718
</td>
</tr>
719
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
720 721 722 723 724 725 726 727
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="spp-layer">
728
<h3>spp_layer<a class="headerlink" href="#spp-layer" title="永久链接至标题"></a></h3>
729 730 731 732 733 734
<dl class="function">
<dt>
<code class="descclassname">paddle.trainer_config_helpers.layers.</code><code class="descname">spp_layer</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition.
The details please refer to
<a class="reference external" href="https://arxiv.org/abs/1406.4729">Kaiming He&#8217;s paper</a>.</p>
735 736 737 738 739 740 741
<p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">spp</span> <span class="o">=</span> <span class="n">spp_layer</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">data</span><span class="p">,</span>
                <span class="n">pyramid_height</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span>
                <span class="n">num_channels</span><span class="o">=</span><span class="mi">16</span><span class="p">,</span>
                <span class="n">pool_type</span><span class="o">=</span><span class="n">MaxPooling</span><span class="p">())</span>
</pre></div>
</div>
742 743 744 745
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
746
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
747 748 749 750 751 752 753 754 755
<li><strong>name</strong> (<em>basestring</em>) &#8211; layer name.</li>
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; layer&#8217;s input.</li>
<li><strong>num_channels</strong> (<em>int</em>) &#8211; number of input channel.</li>
<li><strong>pool_type</strong> &#8211; Pooling type. MaxPooling or AveragePooling. Default is MaxPooling.</li>
<li><strong>pyramid_height</strong> (<em>int</em>) &#8211; pyramid height.</li>
<li><strong>layer_attr</strong> (<a class="reference internal" href="attrs.html#paddle.trainer_config_helpers.attrs.ExtraLayerAttribute" title="paddle.trainer_config_helpers.attrs.ExtraLayerAttribute"><em>ExtraLayerAttribute</em></a>) &#8211; Extra Layer Attribute.</li>
</ul>
</td>
</tr>
756
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">LayerOutput object.</p>
757 758
</td>
</tr>
759
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
760 761 762 763 764 765 766 767
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="maxout-layer">
768
<h3>maxout_layer<a class="headerlink" href="#maxout-layer" title="永久链接至标题"></a></h3>
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
<dl class="function">
<dt>
<code class="descclassname">paddle.trainer_config_helpers.layers.</code><code class="descname">maxout_layer</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><dl class="docutils">
<dt>A layer to do max out on conv layer output.</dt>
<dd><ul class="first last simple">
<li>Input: output of a conv layer.</li>
<li>Output: feature map size same as input. Channel is (input channel) / groups.</li>
</ul>
</dd>
</dl>
<p>So groups should be larger than 1, and the num of channels should be able
to devided by groups.</p>
<dl class="docutils">
<dt>Please refer to Paper:</dt>
<dd><ul class="first last simple">
<li>Maxout Networks: <a class="reference external" href="http://www.jmlr.org/proceedings/papers/v28/goodfellow13.pdf">http://www.jmlr.org/proceedings/papers/v28/goodfellow13.pdf</a></li>
<li>Multi-digit Number Recognition from Street View         Imagery using Deep Convolutional Neural Networks:         <a class="reference external" href="https://arxiv.org/pdf/1312.6082v4.pdf">https://arxiv.org/pdf/1312.6082v4.pdf</a></li>
</ul>
</dd>
</dl>
<p>The simple usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">maxout</span> <span class="o">=</span> <span class="n">maxout_layer</span><span class="p">(</span><span class="nb">input</span><span class="p">,</span>
                      <span class="n">num_channels</span><span class="o">=</span><span class="mi">128</span><span class="p">,</span>
                      <span class="n">groups</span><span class="o">=</span><span class="mi">4</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
800
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
801 802 803 804 805
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; The input layer.</li>
<li><strong>num_channels</strong> (<em>int|None</em>) &#8211; The channel number of input layer. If None will be set
automatically from previous output.</li>
<li><strong>groups</strong> (<em>int</em>) &#8211; The group number of input layer.</li>
<li><strong>name</strong> (<em>None|basestring.</em>) &#8211; The name of this layer, which can not specify.</li>
806 807 808 809
<li><strong>layer_attr</strong> (<a class="reference internal" href="attrs.html#paddle.trainer_config_helpers.attrs.ExtraLayerAttribute" title="paddle.trainer_config_helpers.attrs.ExtraLayerAttribute"><em>ExtraLayerAttribute</em></a>) &#8211; Extra Layer attribute.</li>
</ul>
</td>
</tr>
810
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">LayerOutput object.</p>
811 812
</td>
</tr>
813
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
814 815 816 817 818 819
</td>
</tr>
</tbody>
</table>
</dd></dl>

Y
Yu Yang 已提交
820 821 822
</div>
</div>
<div class="section" id="norm-layer">
823
<h2>Norm Layer<a class="headerlink" href="#norm-layer" title="永久链接至标题"></a></h2>
Y
Yu Yang 已提交
824
<div class="section" id="img-cmrnorm-layer">
825
<h3>img_cmrnorm_layer<a class="headerlink" href="#img-cmrnorm-layer" title="永久链接至标题"></a></h3>
Y
Yu Yang 已提交
826 827 828
<dl class="function">
<dt>
<code class="descclassname">paddle.trainer_config_helpers.layers.</code><code class="descname">img_cmrnorm_layer</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
829
<dd><p>Response normalization across feature maps.
Y
Yu Yang 已提交
830 831
The details please refer to
<a class="reference external" href="http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf">Alex&#8217;s paper</a>.</p>
832 833 834 835
<p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">norm</span> <span class="o">=</span> <span class="n">img_cmrnorm_layer</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">net</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="mi">5</span><span class="p">)</span>
</pre></div>
</div>
Y
Yu Yang 已提交
836 837 838 839
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
840
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
Y
Yu Yang 已提交
841
<li><strong>name</strong> (<em>None|basestring</em>) &#8211; layer name.</li>
Y
Yu Yang 已提交
842
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; layer&#8217;s input.</li>
843
<li><strong>size</strong> (<em>int</em>) &#8211; Normalize in number of <span class="math">\(size\)</span> feature maps.</li>
Y
Yu Yang 已提交
844 845
<li><strong>scale</strong> (<em>float</em>) &#8211; The hyper-parameter.</li>
<li><strong>power</strong> (<em>float</em>) &#8211; The hyper-parameter.</li>
Y
Yu Yang 已提交
846 847 848 849 850 851
<li><strong>num_channels</strong> &#8211; input layer&#8217;s filers number or channels. If
num_channels is None, it will be set automatically.</li>
<li><strong>layer_attr</strong> (<a class="reference internal" href="attrs.html#paddle.trainer_config_helpers.attrs.ExtraLayerAttribute" title="paddle.trainer_config_helpers.attrs.ExtraLayerAttribute"><em>ExtraLayerAttribute</em></a>) &#8211; Extra Layer Attribute.</li>
</ul>
</td>
</tr>
852
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">LayerOutput object.</p>
Y
Yu Yang 已提交
853 854
</td>
</tr>
855
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
Y
Yu Yang 已提交
856 857 858 859 860 861 862 863
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="batch-norm-layer">
864
<h3>batch_norm_layer<a class="headerlink" href="#batch-norm-layer" title="永久链接至标题"></a></h3>
Y
Yu Yang 已提交
865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
<dl class="function">
<dt>
<code class="descclassname">paddle.trainer_config_helpers.layers.</code><code class="descname">batch_norm_layer</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Batch Normalization Layer. The notation of this layer as follow.</p>
<p><span class="math">\(x\)</span> is the input features over a mini-batch.</p>
<div class="math">
\[\begin{split}\mu_{\beta} &amp;\gets \frac{1}{m} \sum_{i=1}^{m} x_i \qquad &amp;//\
\ mini-batch\ mean \\
\sigma_{\beta}^{2} &amp;\gets \frac{1}{m} \sum_{i=1}^{m}(x_i - \
\mu_{\beta})^2 \qquad &amp;//\ mini-batch\ variance \\
\hat{x_i} &amp;\gets \frac{x_i - \mu_\beta} {\sqrt{\
\sigma_{\beta}^{2} + \epsilon}} \qquad &amp;//\ normalize \\
y_i &amp;\gets \gamma \hat{x_i} + \beta \qquad &amp;//\ scale\ and\ shift\end{split}\]</div>
<p>The details of batch normalization please refer to this
<a class="reference external" href="http://arxiv.org/abs/1502.03167">paper</a>.</p>
880 881 882 883
<p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">norm</span> <span class="o">=</span> <span class="n">batch_norm_layer</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">net</span><span class="p">,</span> <span class="n">act</span><span class="o">=</span><span class="n">ReluActivation</span><span class="p">())</span>
</pre></div>
</div>
Y
Yu Yang 已提交
884 885 886 887
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
888
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
Y
Yu Yang 已提交
889 890 891
<li><strong>name</strong> (<em>basestring</em>) &#8211; layer name.</li>
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; batch normalization input. Better be linear activation.
Because there is an activation inside batch_normalization.</li>
892
<li><strong>batch_norm_type</strong> (<em>None|string</em><em>, </em><em>None</em><em> or </em><em>&quot;batch_norm&quot;</em><em> or </em><em>&quot;cudnn_batch_norm&quot;</em>) &#8211; We have batch_norm and cudnn_batch_norm. batch_norm
Y
Yu Yang 已提交
893 894 895 896 897 898 899 900
supports both CPU and GPU. cudnn_batch_norm requires
cuDNN version greater or equal to v4 (&gt;=v4). But
cudnn_batch_norm is faster and needs less memory
than batch_norm. By default (None), we will
automaticly select cudnn_batch_norm for GPU and
batch_norm for CPU. Otherwise, select batch norm
type based on the specified type. If you use cudnn_batch_norm,
we suggested you use latest version, such as v5.1.</li>
Y
Yu Yang 已提交
901
<li><strong>act</strong> (<em>BaseActivation</em>) &#8211; Activation Type. Better be relu. Because batch
Y
Yu Yang 已提交
902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
normalization will normalize input near zero.</li>
<li><strong>num_channels</strong> (<em>int</em>) &#8211; num of image channels or previous layer&#8217;s number of
filters. None will automatically get from layer&#8217;s
input.</li>
<li><strong>bias_attr</strong> (<a class="reference internal" href="attrs.html#paddle.trainer_config_helpers.attrs.ParameterAttribute" title="paddle.trainer_config_helpers.attrs.ParameterAttribute"><em>ParameterAttribute</em></a>) &#8211; <span class="math">\(\beta\)</span>, better be zero when initialize. So the
initial_std=0, initial_mean=1 is best practice.</li>
<li><strong>param_attr</strong> (<a class="reference internal" href="attrs.html#paddle.trainer_config_helpers.attrs.ParameterAttribute" title="paddle.trainer_config_helpers.attrs.ParameterAttribute"><em>ParameterAttribute</em></a>) &#8211; <span class="math">\(\gamma\)</span>, better be one when initialize. So the
initial_std=0, initial_mean=1 is best practice.</li>
<li><strong>layer_attr</strong> (<a class="reference internal" href="attrs.html#paddle.trainer_config_helpers.attrs.ExtraLayerAttribute" title="paddle.trainer_config_helpers.attrs.ExtraLayerAttribute"><em>ExtraLayerAttribute</em></a>) &#8211; Extra Layer Attribute.</li>
<li><strong>use_global_stats</strong> (<em>bool|None.</em>) &#8211; whether use moving mean/variance statistics
during testing peroid. If None or True,
it will use moving mean/variance statistics during
testing. If False, it will use the mean
and variance of current batch of test data for
testing.</li>
<li><strong>moving_average_fraction</strong> (<em>float.</em>) &#8211; Factor used in the moving average
computation, referred to as facotr,
<span class="math">\(runningMean = newMean*(1-factor)
+ runningMean*factor\)</span></li>
</ul>
</td>
</tr>
924
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">LayerOutput object.</p>
Y
Yu Yang 已提交
925 926
</td>
</tr>
927
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
Y
Yu Yang 已提交
928 929 930 931 932 933 934 935
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="sum-to-one-norm-layer">
936
<h3>sum_to_one_norm_layer<a class="headerlink" href="#sum-to-one-norm-layer" title="永久链接至标题"></a></h3>
Y
Yu Yang 已提交
937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953
<dl class="function">
<dt>
<code class="descclassname">paddle.trainer_config_helpers.layers.</code><code class="descname">sum_to_one_norm_layer</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>A layer for sum-to-one normalization,
which is used in NEURAL TURING MACHINE.</p>
<div class="math">
\[out[i] = \frac {in[i]} {\sum_{k=1}^N in[k]}\]</div>
<p>where <span class="math">\(in\)</span> is a (batchSize x dataDim) input vector,
and <span class="math">\(out\)</span> is a (batchSize x dataDim) output vector.</p>
<p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">sum_to_one_norm</span> <span class="o">=</span> <span class="n">sum_to_one_norm_layer</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">layer</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
954
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
Y
Yu Yang 已提交
955 956 957 958 959 960
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; Input layer.</li>
<li><strong>name</strong> (<em>basestring</em>) &#8211; Layer name.</li>
<li><strong>layer_attr</strong> (<em>ExtraLayerAttribute.</em>) &#8211; extra layer attributes.</li>
</ul>
</td>
</tr>
961
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">LayerOutput object.</p>
Y
Yu Yang 已提交
962 963
</td>
</tr>
964
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
Y
Yu Yang 已提交
965 966 967 968 969 970 971 972 973
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
</div>
<div class="section" id="recurrent-layers">
974
<h2>Recurrent Layers<a class="headerlink" href="#recurrent-layers" title="永久链接至标题"></a></h2>
Y
Yu Yang 已提交
975
<div class="section" id="recurrent-layer">
976
<h3>recurrent_layer<a class="headerlink" href="#recurrent-layer" title="永久链接至标题"></a></h3>
Y
Yu Yang 已提交
977 978 979
<dl class="function">
<dt>
<code class="descclassname">paddle.trainer_config_helpers.layers.</code><code class="descname">recurrent_layer</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
980 981 982 983 984 985 986 987 988 989
<dd><p>Simple recurrent unit layer. It is just a fully connect layer through both
time and neural network.</p>
<p>For each sequence [start, end] it performs the following computation:</p>
<div class="math">
\[\begin{split}out_{i} = act(in_{i})     \      \      \text{for} \ i = start \\
out_{i} = act(in_{i} + out_{i-1} * W) \ \ \text{for} \ start &lt; i &lt;= end\end{split}\]</div>
<p>If reversed is true, the order is reversed:</p>
<div class="math">
\[\begin{split}out_{i} = act(in_{i})           \    \   \text{for} \ i = end  \\
out_{i} = act(in_{i} + out_{i+1} * W) \ \ \text{for} \ start &lt;= i &lt; end\end{split}\]</div>
Y
Yu Yang 已提交
990 991 992 993
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
994
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
995 996 997 998 999 1000
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; Input Layer</li>
<li><strong>act</strong> (<em>BaseActivation</em>) &#8211; activation.</li>
<li><strong>bias_attr</strong> (<a class="reference internal" href="attrs.html#paddle.trainer_config_helpers.attrs.ParameterAttribute" title="paddle.trainer_config_helpers.attrs.ParameterAttribute"><em>ParameterAttribute</em></a>) &#8211; bias attribute.</li>
<li><strong>param_attr</strong> (<a class="reference internal" href="attrs.html#paddle.trainer_config_helpers.attrs.ParameterAttribute" title="paddle.trainer_config_helpers.attrs.ParameterAttribute"><em>ParameterAttribute</em></a>) &#8211; parameter attribute.</li>
<li><strong>name</strong> (<em>basestring</em>) &#8211; name of the layer</li>
<li><strong>layer_attr</strong> (<a class="reference internal" href="attrs.html#paddle.trainer_config_helpers.attrs.ExtraLayerAttribute" title="paddle.trainer_config_helpers.attrs.ExtraLayerAttribute"><em>ExtraLayerAttribute</em></a>) &#8211; Layer Attribute.</li>
Y
Yu Yang 已提交
1001 1002 1003
</ul>
</td>
</tr>
1004
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">LayerOutput object.</p>
1005 1006
</td>
</tr>
1007
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
Y
Yu Yang 已提交
1008 1009 1010 1011 1012 1013 1014 1015
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="lstmemory">
1016
<h3>lstmemory<a class="headerlink" href="#lstmemory" title="永久链接至标题"></a></h3>
Y
Yu Yang 已提交
1017 1018 1019 1020 1021 1022
<dl class="function">
<dt>
<code class="descclassname">paddle.trainer_config_helpers.layers.</code><code class="descname">lstmemory</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Long Short-term Memory Cell.</p>
<p>The memory cell was implemented as follow equations.</p>
<div class="math">
1023
\[ \begin{align}\begin{aligned}i_t &amp; = \sigma(W_{xi}x_{t} + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_i)\\f_t &amp; = \sigma(W_{xf}x_{t} + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_f)\\c_t &amp; = f_tc_{t-1} + i_t tanh (W_{xc}x_t+W_{hc}h_{t-1} + b_c)\\o_t &amp; = \sigma(W_{xo}x_{t} + W_{ho}h_{t-1} + W_{co}c_t + b_o)\\h_t &amp; = o_t tanh(c_t)\end{aligned}\end{align} \]</div>
Y
Yu Yang 已提交
1024
<p>NOTE: In PaddlePaddle&#8217;s implementation, the multiplications
Y
Yu Yang 已提交
1025
<span class="math">\(W_{xi}x_{t}\)</span> , <span class="math">\(W_{xf}x_{t}\)</span>,
Y
Yu Yang 已提交
1026 1027 1028 1029 1030
<span class="math">\(W_{xc}x_t\)</span>, <span class="math">\(W_{xo}x_{t}\)</span> are not done in the lstmemory layer,
so an additional mixed_layer with full_matrix_projection or a fc_layer must
be included in the configuration file to complete the input-to-hidden
mappings before lstmemory is called.</p>
<p>NOTE: This is a low level user interface. You can use network.simple_lstm
Y
Yu Yang 已提交
1031
to config a simple plain lstm layer.</p>
Y
Yu Yang 已提交
1032 1033 1034
<p>Please refer to <strong>Generating Sequences With Recurrent Neural Networks</strong> for
more details about LSTM.</p>
<p><a class="reference external" href="http://arxiv.org/abs/1308.0850">Link</a> goes as below.</p>
Y
Yu Yang 已提交
1035 1036 1037 1038
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
1039
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
Y
Yu Yang 已提交
1040 1041 1042
<li><strong>name</strong> (<em>basestring</em>) &#8211; The lstmemory layer name.</li>
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; input layer name.</li>
<li><strong>reverse</strong> (<em>bool</em>) &#8211; is sequence process reversed or not.</li>
Y
Yu Yang 已提交
1043 1044 1045
<li><strong>act</strong> (<em>BaseActivation</em>) &#8211; activation type, TanhActivation by default. <span class="math">\(h_t\)</span></li>
<li><strong>gate_act</strong> (<em>BaseActivation</em>) &#8211; gate activation type, SigmoidActivation by default.</li>
<li><strong>state_act</strong> (<em>BaseActivation</em>) &#8211; state activation type, TanhActivation by default.</li>
Y
Yu Yang 已提交
1046 1047 1048 1049 1050 1051 1052
<li><strong>bias_attr</strong> (<em>ParameterAttribute|None|False</em>) &#8211; Bias attribute. None means default bias. False means no
bias.</li>
<li><strong>param_attr</strong> (<em>ParameterAttribute|None|False</em>) &#8211; Parameter Attribute.</li>
<li><strong>layer_attr</strong> (<em>ExtraLayerAttribute|None</em>) &#8211; Extra Layer attribute</li>
</ul>
</td>
</tr>
1053
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">LayerOutput object.</p>
Y
Yu Yang 已提交
1054 1055
</td>
</tr>
1056
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
Y
Yu Yang 已提交
1057 1058 1059 1060 1061 1062 1063 1064
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="grumemory">
1065
<h3>grumemory<a class="headerlink" href="#grumemory" title="永久链接至标题"></a></h3>
Y
Yu Yang 已提交
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
<dl class="function">
<dt>
<code class="descclassname">paddle.trainer_config_helpers.layers.</code><code class="descname">grumemory</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Gate Recurrent Unit Layer.</p>
<p>The memory cell was implemented as follow equations.</p>
<p>1. update gate <span class="math">\(z\)</span>: defines how much of the previous memory to
keep around or the unit updates its activations. The update gate
is computed by:</p>
<div class="math">
\[z_t = \sigma(W_{z}x_{t} + U_{z}h_{t-1} + b_z)\]</div>
<p>2. reset gate <span class="math">\(r\)</span>: determines how to combine the new input with the
previous memory. The reset gate is computed similarly to the update gate:</p>
<div class="math">
\[r_t = \sigma(W_{r}x_{t} + U_{r}h_{t-1} + b_r)\]</div>
Y
Yu Yang 已提交
1080 1081
<p>3. The candidate activation <span class="math">\(\tilde{h_t}\)</span> is computed similarly to
that of the traditional recurrent unit:</p>
Y
Yu Yang 已提交
1082 1083
<div class="math">
\[{\tilde{h_t}} = tanh(W x_{t} + U (r_{t} \odot h_{t-1}) + b)\]</div>
Y
Yu Yang 已提交
1084 1085 1086
<p>4. The hidden activation <span class="math">\(h_t\)</span> of the GRU at time t is a linear
interpolation between the previous activation <span class="math">\(h_{t-1}\)</span> and the
candidate activation <span class="math">\(\tilde{h_t}\)</span>:</p>
Y
Yu Yang 已提交
1087 1088
<div class="math">
\[h_t = (1 - z_t) h_{t-1} + z_t {\tilde{h_t}}\]</div>
Y
Yu Yang 已提交
1089
<p>NOTE: In PaddlePaddle&#8217;s implementation, the multiplication operations
Y
Yu Yang 已提交
1090
<span class="math">\(W_{r}x_{t}\)</span>, <span class="math">\(W_{z}x_{t}\)</span> and <span class="math">\(W x_t\)</span> are not computed in
Y
Yu Yang 已提交
1091 1092 1093 1094 1095
gate_recurrent layer. Consequently, an additional mixed_layer with
full_matrix_projection or a fc_layer must be included before grumemory
is called.</p>
<p>More details can be found by referring to <a class="reference external" href="https://arxiv.org/abs/1412.3555">Empirical Evaluation of Gated
Recurrent Neural Networks on Sequence Modeling.</a></p>
Y
Yu Yang 已提交
1096 1097 1098 1099 1100 1101 1102 1103
<p>The simple usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">gru</span> <span class="o">=</span> <span class="n">grumemory</span><span class="p">(</span><span class="nb">input</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
1104
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
Y
Yu Yang 已提交
1105 1106
<li><strong>name</strong> (<em>None|basestring</em>) &#8211; The gru layer name.</li>
<li><strong>input</strong> (<em>LayerOutput.</em>) &#8211; input layer.</li>
1107
<li><strong>reverse</strong> (<em>bool</em>) &#8211; Whether sequence process is reversed or not.</li>
Y
Yu Yang 已提交
1108
<li><strong>act</strong> (<em>BaseActivation</em>) &#8211; activation type, TanhActivation by default. This activation
Y
Yu Yang 已提交
1109
affects the <span class="math">\({\tilde{h_t}}\)</span>.</li>
Y
Yu Yang 已提交
1110
<li><strong>gate_act</strong> (<em>BaseActivation</em>) &#8211; gate activation type, SigmoidActivation by default.
Y
Yu Yang 已提交
1111 1112 1113 1114 1115 1116
This activation affects the <span class="math">\(z_t\)</span> and <span class="math">\(r_t\)</span>. It is the
<span class="math">\(\sigma\)</span> in the above formula.</li>
<li><strong>bias_attr</strong> (<em>ParameterAttribute|None|False</em>) &#8211; Bias attribute. None means default bias. False means no
bias.</li>
<li><strong>param_attr</strong> (<em>ParameterAttribute|None|False</em>) &#8211; Parameter Attribute.</li>
<li><strong>layer_attr</strong> (<em>ExtraLayerAttribute|None</em>) &#8211; Extra Layer attribute</li>
1117 1118
<li><strong>size</strong> (<em>None</em>) &#8211; Stub parameter of size, but actually not used. If set this size
will get a warning.</li>
Y
Yu Yang 已提交
1119 1120 1121
</ul>
</td>
</tr>
1122
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">LayerOutput object.</p>
Y
Yu Yang 已提交
1123 1124
</td>
</tr>
1125
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
Y
Yu Yang 已提交
1126 1127 1128 1129 1130 1131 1132 1133 1134
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
</div>
<div class="section" id="recurrent-layer-group">
1135
<h2>Recurrent Layer Group<a class="headerlink" href="#recurrent-layer-group" title="永久链接至标题"></a></h2>
1136
<div class="section" id="memory">
1137
<h3>memory<a class="headerlink" href="#memory" title="永久链接至标题"></a></h3>
1138 1139
<dl class="function">
<dt>
1140
<code class="descclassname">paddle.trainer_config_helpers.layers.</code><code class="descname">memory</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
<dd><p>The memory layers is a layer cross each time step. Reference this output
as previous time step layer <code class="code docutils literal"><span class="pre">name</span></code> &#8216;s output.</p>
<p>The default memory is zero in first time step, previous time step&#8217;s
output in the rest time steps.</p>
<p>If boot_bias, the first time step value is this bias and
with activation.</p>
<p>If boot_with_const_id, then the first time stop is a IndexSlot, the
Arguments.ids()[0] is this <code class="code docutils literal"><span class="pre">cost_id</span></code>.</p>
<p>If boot_layer is not null, the memory is just the boot_layer&#8217;s output.
Set <code class="code docutils literal"><span class="pre">is_seq</span></code> is true boot layer is sequence.</p>
<p>The same name layer in recurrent group will set memory on each time
step.</p>
1153 1154 1155 1156 1157 1158
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">mem</span> <span class="o">=</span> <span class="n">memory</span><span class="p">(</span><span class="n">size</span><span class="o">=</span><span class="mi">256</span><span class="p">,</span> <span class="n">name</span><span class="o">=</span><span class="s1">&#39;state&#39;</span><span class="p">)</span>
<span class="n">state</span> <span class="o">=</span> <span class="n">fc_layer</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">mem</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="mi">256</span><span class="p">,</span> <span class="n">name</span><span class="o">=</span><span class="s1">&#39;state&#39;</span><span class="p">)</span>
</pre></div>
</div>
<p>If you do not want to specify the name, you can equivalently use set_input()
to specify the layer needs to be remembered as the following:</p>
1159 1160 1161 1162
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
1163 1164 1165 1166
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
<li><strong>name</strong> (<em>basestring</em>) &#8211; the name of the layer which this memory remembers.
If name is None, user should call set_input() to specify the
name of the layer which this memory remembers.</li>
1167
<li><strong>size</strong> (<em>int</em>) &#8211; size of memory.</li>
1168 1169
<li><strong>memory_name</strong> (<em>basestring</em>) &#8211; the name of the memory.
It is ignored when name is provided.</li>
1170 1171 1172 1173 1174 1175 1176 1177
<li><strong>is_seq</strong> (<em>bool</em>) &#8211; is sequence for boot_layer</li>
<li><strong>boot_layer</strong> (<em>LayerOutput|None</em>) &#8211; boot layer of memory.</li>
<li><strong>boot_bias</strong> (<em>ParameterAttribute|None</em>) &#8211; boot layer&#8217;s bias</li>
<li><strong>boot_bias_active_type</strong> (<em>BaseActivation</em>) &#8211; boot layer&#8217;s active type.</li>
<li><strong>boot_with_const_id</strong> (<em>int</em>) &#8211; boot layer&#8217;s id.</li>
</ul>
</td>
</tr>
1178
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">LayerOutput object which is a memory.</p>
1179 1180
</td>
</tr>
1181
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
1182 1183 1184 1185 1186 1187 1188
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
Y
Yu Yang 已提交
1189
<div class="section" id="recurrent-group">
1190
<h3>recurrent_group<a class="headerlink" href="#recurrent-group" title="永久链接至标题"></a></h3>
Y
Yu Yang 已提交
1191 1192 1193
<dl class="function">
<dt>
<code class="descclassname">paddle.trainer_config_helpers.layers.</code><code class="descname">recurrent_group</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
Y
Yu Yang 已提交
1194 1195 1196 1197 1198
<dd><p>Recurrent layer group is an extremely flexible recurrent unit in
PaddlePaddle. As long as the user defines the calculation done within a
time step, PaddlePaddle will iterate such a recurrent calculation over
sequence input. This is extremely usefull for attention based model, or
Neural Turning Machine like models.</p>
Y
Yu Yang 已提交
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
<p>The basic usage (time steps) is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">step</span><span class="p">(</span><span class="nb">input</span><span class="p">):</span>
    <span class="n">output</span> <span class="o">=</span> <span class="n">fc_layer</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">layer</span><span class="p">,</span>
                      <span class="n">size</span><span class="o">=</span><span class="mi">1024</span><span class="p">,</span>
                      <span class="n">act</span><span class="o">=</span><span class="n">LinearActivation</span><span class="p">(),</span>
                      <span class="n">bias_attr</span><span class="o">=</span><span class="bp">False</span><span class="p">)</span>
    <span class="k">return</span> <span class="n">output</span>

<span class="n">group</span> <span class="o">=</span> <span class="n">recurrent_group</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">layer</span><span class="p">,</span>
                        <span class="n">step</span><span class="o">=</span><span class="n">step</span><span class="p">)</span>
</pre></div>
</div>
<p>You can see following configs for further usages:</p>
<ul class="simple">
<li>time steps: lstmemory_group, paddle/gserver/tests/sequence_layer_group.conf,                   demo/seqToseq/seqToseq_net.py</li>
<li>sequence steps: paddle/gserver/tests/sequence_nest_layer_group.conf</li>
</ul>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
1220
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first last simple">
Y
Yu Yang 已提交
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
<li><strong>step</strong> (<em>callable</em>) &#8211; <p>recurrent one time step function.The input of this function is
input of the group. The return of this function will be
recurrent group&#8217;s return value.</p>
<p>The recurrent group scatter a sequence into time steps. And
for each time step, will invoke step function, and return
a time step result. Then gather each time step of output into
layer group&#8217;s output.</p>
</li>
<li><strong>name</strong> (<em>basestring</em>) &#8211; recurrent_group&#8217;s name.</li>
<li><strong>input</strong> (<em>LayerOutput|StaticInput|SubsequenceInput|list|tuple</em>) &#8211; <p>Input links array.</p>
<p>LayerOutput will be scattered into time steps.
SubsequenceInput will be scattered into sequence steps.
StaticInput will be imported to each time step, and doesn&#8217;t change
through time. It&#8217;s a mechanism to access layer outside step function.</p>
</li>
<li><strong>reverse</strong> (<em>bool</em>) &#8211; If reverse is set true, the recurrent unit will process the
input sequence in a reverse order.</li>
1238 1239 1240 1241 1242 1243 1244
<li><strong>targetInlink</strong> (<em>LayerOutput|SubsequenceInput</em>) &#8211; <p>the input layer which share info with layer group&#8217;s output</p>
<p>Param input specifies multiple input layers. For
SubsequenceInput inputs, config should assign one input
layer that share info(the number of sentences and the number
of words in each sentence) with all layer group&#8217;s outputs.
targetInlink should be one of the layer group&#8217;s input.</p>
</li>
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
<li><strong>is_generating</strong> &#8211; If is generating, none of input type should be LayerOutput;
else, for training or testing, one of the input type must
be LayerOutput.</li>
</ul>
</td>
</tr>
</tbody>
</table>
<p>: type is_generating: bool</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">返回:</th><td class="field-body">LayerOutput object.</td>
</tr>
<tr class="field-even field"><th class="field-name">返回类型:</th><td class="field-body">LayerOutput</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="lstm-step-layer">
<h3>lstm_step_layer<a class="headerlink" href="#lstm-step-layer" title="永久链接至标题"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.trainer_config_helpers.layers.</code><code class="descname">lstm_step_layer</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>LSTM Step Layer. It used in recurrent_group. The lstm equations are shown
as follow.</p>
<div class="math">
\[ \begin{align}\begin{aligned}i_t &amp; = \sigma(W_{xi}x_{t} + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_i)\\f_t &amp; = \sigma(W_{xf}x_{t} + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_f)\\c_t &amp; = f_tc_{t-1} + i_t tanh (W_{xc}x_t+W_{hc}h_{t-1} + b_c)\\o_t &amp; = \sigma(W_{xo}x_{t} + W_{ho}h_{t-1} + W_{co}c_t + b_o)\\h_t &amp; = o_t tanh(c_t)\end{aligned}\end{align} \]</div>
<p>The input of lstm step is <span class="math">\(Wx_t + Wh_{t-1}\)</span>, and user should use
<code class="code docutils literal"><span class="pre">mixed_layer</span></code> and <code class="code docutils literal"><span class="pre">full_matrix_projection</span></code> to calculate these
input vector.</p>
<p>The state of lstm step is <span class="math">\(c_{t-1}\)</span>. And lstm step layer will do</p>
<div class="math">
\[ \begin{align}\begin{aligned}i_t = \sigma(input + W_{ci}c_{t-1} + b_i)\\...\end{aligned}\end{align} \]</div>
<p>This layer contains two outputs. Default output is <span class="math">\(h_t\)</span>. The other
output is <span class="math">\(o_t\)</span>, which name is &#8216;state&#8217; and can use
<code class="code docutils literal"><span class="pre">get_output_layer</span></code> to extract this output.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
<li><strong>name</strong> (<em>basestring</em>) &#8211; Layer&#8217;s name.</li>
<li><strong>size</strong> (<em>int</em>) &#8211; Layer&#8217;s size. NOTE: lstm layer&#8217;s size, should be equal as
<code class="code docutils literal"><span class="pre">input.size/4</span></code>, and should be equal as
<code class="code docutils literal"><span class="pre">state.size</span></code>.</li>
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; input layer. <span class="math">\(Wx_t + Wh_{t-1}\)</span></li>
<li><strong>state</strong> (<em>LayerOutput</em>) &#8211; State Layer. <span class="math">\(c_{t-1}\)</span></li>
<li><strong>act</strong> (<em>BaseActivation</em>) &#8211; Activation type. Default is tanh</li>
<li><strong>gate_act</strong> (<em>BaseActivation</em>) &#8211; Gate Activation Type. Default is sigmoid, and should
be sigmoid only.</li>
<li><strong>state_act</strong> (<em>BaseActivation</em>) &#8211; State Activation Type. Default is sigmoid, and should
be sigmoid only.</li>
<li><strong>bias_attr</strong> (<a class="reference internal" href="attrs.html#paddle.trainer_config_helpers.attrs.ParameterAttribute" title="paddle.trainer_config_helpers.attrs.ParameterAttribute"><em>ParameterAttribute</em></a>) &#8211; Bias Attribute.</li>
<li><strong>layer_attr</strong> (<a class="reference internal" href="attrs.html#paddle.trainer_config_helpers.attrs.ExtraLayerAttribute" title="paddle.trainer_config_helpers.attrs.ExtraLayerAttribute"><em>ExtraLayerAttribute</em></a>) &#8211; layer&#8217;s extra attribute.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">LayerOutput object.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="gru-step-layer">
<h3>gru_step_layer<a class="headerlink" href="#gru-step-layer" title="永久链接至标题"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.trainer_config_helpers.layers.</code><code class="descname">gru_step_layer</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; </li>
<li><strong>output_mem</strong> &#8211; </li>
<li><strong>size</strong> &#8211; </li>
<li><strong>act</strong> &#8211; </li>
<li><strong>name</strong> &#8211; </li>
<li><strong>gate_act</strong> &#8211; </li>
<li><strong>bias_attr</strong> &#8211; </li>
<li><strong>param_attr</strong> &#8211; the parameter_attribute for transforming the output_mem
from previous step.</li>
<li><strong>layer_attr</strong> &#8211; </li>
Y
Yu Yang 已提交
1337 1338 1339
</ul>
</td>
</tr>
1340
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">LayerOutput object.</p>
Y
Yu Yang 已提交
1341 1342
</td>
</tr>
1343
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
Y
Yu Yang 已提交
1344 1345 1346 1347 1348 1349 1350 1351
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="beam-search">
1352
<h3>beam_search<a class="headerlink" href="#beam-search" title="永久链接至标题"></a></h3>
Y
Yu Yang 已提交
1353 1354 1355 1356 1357 1358 1359 1360 1361
<dl class="function">
<dt>
<code class="descclassname">paddle.trainer_config_helpers.layers.</code><code class="descname">beam_search</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Beam search is a heuristic search algorithm used in sequence generation.
It explores a graph by expanding the most promising nodes in a limited set
to maintain tractability.</p>
<p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">rnn_step</span><span class="p">(</span><span class="nb">input</span><span class="p">):</span>
    <span class="n">last_time_step_output</span> <span class="o">=</span> <span class="n">memory</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">&#39;rnn&#39;</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="mi">512</span><span class="p">)</span>
1362
    <span class="k">with</span> <span class="n">mixed_layer</span><span class="p">(</span><span class="n">size</span><span class="o">=</span><span class="mi">512</span><span class="p">,</span> <span class="n">name</span><span class="o">=</span><span class="s1">&#39;rnn&#39;</span><span class="p">)</span> <span class="k">as</span> <span class="n">simple_rnn</span><span class="p">:</span>
Y
Yu Yang 已提交
1363 1364 1365 1366 1367 1368
        <span class="n">simple_rnn</span> <span class="o">+=</span> <span class="n">full_matrix_projection</span><span class="p">(</span><span class="nb">input</span><span class="p">)</span>
        <span class="n">simple_rnn</span> <span class="o">+=</span> <span class="n">last_time_step_output</span>
    <span class="k">return</span> <span class="n">simple_rnn</span>

<span class="n">beam_gen</span> <span class="o">=</span> <span class="n">beam_search</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s2">&quot;decoder&quot;</span><span class="p">,</span>
                       <span class="n">step</span><span class="o">=</span><span class="n">rnn_step</span><span class="p">,</span>
1369
                       <span class="nb">input</span><span class="o">=</span><span class="p">[</span><span class="n">StaticInput</span><span class="p">(</span><span class="n">encoder_last</span><span class="p">)],</span>
Y
Yu Yang 已提交
1370 1371
                       <span class="n">bos_id</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span>
                       <span class="n">eos_id</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
1372
                       <span class="n">beam_size</span><span class="o">=</span><span class="mi">5</span><span class="p">)</span>
Y
Yu Yang 已提交
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
</pre></div>
</div>
<p>Please see the following demo for more details:</p>
<ul class="simple">
<li>machine translation : demo/seqToseq/translation/gen.conf                             demo/seqToseq/seqToseq_net.py</li>
</ul>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
1383
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
Y
Yu Yang 已提交
1384 1385
<li><strong>name</strong> (<em>base string</em>) &#8211; Name of the recurrent unit that generates sequences.</li>
<li><strong>step</strong> (<em>callable</em>) &#8211; <p>A callable function that defines the calculation in a time
1386
step, and it is applied to sequences with arbitrary length by
Y
Yu Yang 已提交
1387 1388 1389 1390
sharing a same set of weights.</p>
<p>You can refer to the first parameter of recurrent_group, or
demo/seqToseq/seqToseq_net.py for more details.</p>
</li>
1391
<li><strong>input</strong> (<em>list</em>) &#8211; Input data for the recurrent unit</li>
Y
Yu Yang 已提交
1392 1393 1394
<li><strong>bos_id</strong> (<em>int</em>) &#8211; Index of the start symbol in the dictionary. The start symbol
is a special token for NLP task, which indicates the
beginning of a sequence. In the generation task, the start
1395
symbol is essential, since it is used to initialize the RNN
Y
Yu Yang 已提交
1396 1397 1398 1399 1400 1401
internal state.</li>
<li><strong>eos_id</strong> (<em>int</em>) &#8211; Index of the end symbol in the dictionary. The end symbol is
a special token for NLP task, which indicates the end of a
sequence. The generation process will stop once the end
symbol is generated, or a pre-defined max iteration number
is exceeded.</li>
1402
<li><strong>max_length</strong> (<em>int</em>) &#8211; Max generated sequence length.</li>
Y
Yu Yang 已提交
1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
<li><strong>beam_size</strong> (<em>int</em>) &#8211; Beam search for sequence generation is an iterative search
algorithm. To maintain tractability, every iteration only
only stores a predetermined number, called the beam_size,
of the most promising next words. The greater the beam
size, the fewer candidate words are pruned.</li>
<li><strong>num_results_per_sample</strong> (<em>int</em>) &#8211; Number of the generated results per input
sequence. This number must always be less than
beam size.</li>
</ul>
</td>
</tr>
1414
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">The generated word index.</p>
Y
Yu Yang 已提交
1415 1416
</td>
</tr>
1417
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
Y
Yu Yang 已提交
1418 1419 1420 1421 1422 1423 1424
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
Y
Yu Yang 已提交
1425
<div class="section" id="get-output-layer">
1426
<h3>get_output_layer<a class="headerlink" href="#get-output-layer" title="永久链接至标题"></a></h3>
Y
Yu Yang 已提交
1427 1428 1429
<dl class="function">
<dt>
<code class="descclassname">paddle.trainer_config_helpers.layers.</code><code class="descname">get_output_layer</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
Y
Yu Yang 已提交
1430 1431 1432 1433
<dd><p>Get layer&#8217;s output by name. In PaddlePaddle, a layer might return multiple
values, but returns one layer&#8217;s output. If the user wants to use another
output besides the default one, please use get_output_layer first to get
the output from input.</p>
Y
Yu Yang 已提交
1434 1435 1436 1437
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
1438
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
Y
Yu Yang 已提交
1439 1440 1441 1442 1443 1444 1445 1446
<li><strong>name</strong> (<em>basestring</em>) &#8211; Layer&#8217;s name.</li>
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; get output layer&#8217;s input. And this layer should contains
multiple outputs.</li>
<li><strong>arg_name</strong> (<em>basestring</em>) &#8211; Output name from input.</li>
<li><strong>layer_attr</strong> &#8211; Layer&#8217;s extra attribute.</li>
</ul>
</td>
</tr>
1447
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">LayerOutput object.</p>
Y
Yu Yang 已提交
1448 1449
</td>
</tr>
1450
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
Y
Yu Yang 已提交
1451 1452 1453 1454 1455 1456 1457 1458 1459
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
</div>
<div class="section" id="mixed-layer">
1460 1461 1462
<h2>Mixed Layer<a class="headerlink" href="#mixed-layer" title="永久链接至标题"></a></h2>
<div class="section" id="api-trainer-config-helpers-layers-mixed-layer">
<span id="id2"></span><h3>mixed_layer<a class="headerlink" href="#api-trainer-config-helpers-layers-mixed-layer" title="永久链接至标题"></a></h3>
Y
Yu Yang 已提交
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
<dl class="function">
<dt>
<code class="descclassname">paddle.trainer_config_helpers.layers.</code><code class="descname">mixed_layer</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Mixed Layer. A mixed layer will add all inputs together, then activate.
Each inputs is a projection or operator.</p>
<p>There are two styles of usages.</p>
<ol class="arabic simple">
<li>When not set inputs parameter, use mixed_layer like this:</li>
</ol>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="k">with</span> <span class="n">mixed_layer</span><span class="p">(</span><span class="n">size</span><span class="o">=</span><span class="mi">256</span><span class="p">)</span> <span class="k">as</span> <span class="n">m</span><span class="p">:</span>
    <span class="n">m</span> <span class="o">+=</span> <span class="n">full_matrix_projection</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">layer1</span><span class="p">)</span>
    <span class="n">m</span> <span class="o">+=</span> <span class="n">identity_projection</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">layer2</span><span class="p">)</span>
</pre></div>
</div>
<ol class="arabic simple" start="2">
<li>You can also set all inputs when invoke mixed_layer as follows:</li>
</ol>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">m</span> <span class="o">=</span> <span class="n">mixed_layer</span><span class="p">(</span><span class="n">size</span><span class="o">=</span><span class="mi">256</span><span class="p">,</span>
                <span class="nb">input</span><span class="o">=</span><span class="p">[</span><span class="n">full_matrix_projection</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">layer1</span><span class="p">),</span>
                       <span class="n">full_matrix_projection</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">layer2</span><span class="p">)])</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
1489
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
Y
Yu Yang 已提交
1490 1491 1492 1493
<li><strong>name</strong> (<em>basestring</em>) &#8211; mixed layer name. Can be referenced by other layer.</li>
<li><strong>size</strong> (<em>int</em>) &#8211; layer size.</li>
<li><strong>input</strong> &#8211; inputs layer. It is an optional parameter. If set,
then this function will just return layer&#8217;s name.</li>
Y
Yu Yang 已提交
1494
<li><strong>act</strong> (<em>BaseActivation</em>) &#8211; Activation Type.</li>
1495
<li><strong>bias_attr</strong> (<a class="reference internal" href="attrs.html#paddle.trainer_config_helpers.attrs.ParameterAttribute" title="paddle.trainer_config_helpers.attrs.ParameterAttribute"><em>ParameterAttribute</em></a><em> or </em><em>None</em><em> or </em><em>bool</em>) &#8211; The Bias Attribute. If no bias, then pass False or
Y
Yu Yang 已提交
1496 1497 1498 1499 1500 1501
something not type of ParameterAttribute. None will get a
default Bias.</li>
<li><strong>layer_attr</strong> (<a class="reference internal" href="attrs.html#paddle.trainer_config_helpers.attrs.ExtraLayerAttribute" title="paddle.trainer_config_helpers.attrs.ExtraLayerAttribute"><em>ExtraLayerAttribute</em></a>) &#8211; The extra layer config. Default is None.</li>
</ul>
</td>
</tr>
1502
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">MixedLayerType object can add inputs or layer name.</p>
Y
Yu Yang 已提交
1503 1504
</td>
</tr>
1505
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">MixedLayerType</p>
Y
Yu Yang 已提交
1506 1507 1508 1509 1510 1511 1512 1513
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="embedding-layer">
1514
<span id="api-trainer-config-helpers-layers-embedding-layer"></span><h3>embedding_layer<a class="headerlink" href="#embedding-layer" title="永久链接至标题"></a></h3>
Y
Yu Yang 已提交
1515 1516 1517 1518 1519 1520 1521 1522
<dl class="function">
<dt>
<code class="descclassname">paddle.trainer_config_helpers.layers.</code><code class="descname">embedding_layer</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Define a embedding Layer.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
1523
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
Y
Yu Yang 已提交
1524 1525 1526 1527 1528 1529 1530 1531 1532
<li><strong>name</strong> (<em>basestring</em>) &#8211; Name of this embedding layer.</li>
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; The input layer for this embedding. NOTE: must be Index Data.</li>
<li><strong>size</strong> (<em>int</em>) &#8211; The embedding dimension.</li>
<li><strong>param_attr</strong> (<em>ParameterAttribute|None</em>) &#8211; The embedding parameter attribute. See ParameterAttribute
for details.</li>
<li><strong>layer_attr</strong> (<em>ExtraLayerAttribute|None</em>) &#8211; Extra layer Config. Default is None.</li>
</ul>
</td>
</tr>
1533
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">LayerOutput object.</p>
Y
Yu Yang 已提交
1534 1535
</td>
</tr>
1536
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
Y
Yu Yang 已提交
1537 1538 1539 1540 1541 1542
</td>
</tr>
</tbody>
</table>
</dd></dl>

1543 1544
</div>
<div class="section" id="scaling-projection">
1545
<h3>scaling_projection<a class="headerlink" href="#scaling-projection" title="永久链接至标题"></a></h3>
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
<dl class="function">
<dt>
<code class="descclassname">paddle.trainer_config_helpers.layers.</code><code class="descname">scaling_projection</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>scaling_projection multiplies the input with a scalar parameter and add to
the output.</p>
<div class="math">
\[out += w * in\]</div>
<p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">proj</span> <span class="o">=</span> <span class="n">scaling_projection</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">layer</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
1561
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
1562 1563 1564 1565 1566
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; Input Layer.</li>
<li><strong>param_attr</strong> (<a class="reference internal" href="attrs.html#paddle.trainer_config_helpers.attrs.ParameterAttribute" title="paddle.trainer_config_helpers.attrs.ParameterAttribute"><em>ParameterAttribute</em></a>) &#8211; Parameter config, None if use default.</li>
</ul>
</td>
</tr>
1567
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">A ScalingProjection object</p>
1568 1569
</td>
</tr>
1570
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">ScalingProjection</p>
1571 1572 1573 1574 1575 1576
</td>
</tr>
</tbody>
</table>
</dd></dl>

Y
Yu Yang 已提交
1577 1578
</div>
<div class="section" id="dotmul-projection">
1579
<h3>dotmul_projection<a class="headerlink" href="#dotmul-projection" title="永久链接至标题"></a></h3>
Y
Yu Yang 已提交
1580 1581 1582
<dl class="function">
<dt>
<code class="descclassname">paddle.trainer_config_helpers.layers.</code><code class="descname">dotmul_projection</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
1583
<dd><p>DotMulProjection with a layer as input.
Y
Yu Yang 已提交
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
It performs element-wise multiplication with weight.</p>
<div class="math">
\[out.row[i] += in.row[i] .* weight\]</div>
<p>where <span class="math">\(.*\)</span> means element-wise multiplication.</p>
<p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">proj</span> <span class="o">=</span> <span class="n">dotmul_projection</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">layer</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
1596
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
1597
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; Input layer.</li>
Y
Yu Yang 已提交
1598 1599 1600 1601
<li><strong>param_attr</strong> (<a class="reference internal" href="attrs.html#paddle.trainer_config_helpers.attrs.ParameterAttribute" title="paddle.trainer_config_helpers.attrs.ParameterAttribute"><em>ParameterAttribute</em></a>) &#8211; Parameter config, None if use default.</li>
</ul>
</td>
</tr>
1602
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">A DotMulProjection Object.</p>
Y
Yu Yang 已提交
1603 1604
</td>
</tr>
1605
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">DotMulProjection</p>
Y
Yu Yang 已提交
1606 1607 1608 1609 1610 1611
</td>
</tr>
</tbody>
</table>
</dd></dl>

1612 1613
</div>
<div class="section" id="dotmul-operator">
1614
<h3>dotmul_operator<a class="headerlink" href="#dotmul-operator" title="永久链接至标题"></a></h3>
1615 1616
<dl class="function">
<dt>
1617
<code class="descclassname">paddle.trainer_config_helpers.layers.</code><code class="descname">dotmul_operator</code><span class="sig-paren">(</span><em>a=None</em>, <em>b=None</em>, <em>scale=1</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
1618 1619
<dd><p>DotMulOperator takes two inputs and performs element-wise multiplication:</p>
<div class="math">
1620
\[out.row[i] += scale * (a.row[i] .* b.row[i])\]</div>
1621 1622 1623
<p>where <span class="math">\(.*\)</span> means element-wise multiplication, and
scale is a config scalar, its default value is one.</p>
<p>The example usage is:</p>
1624
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">op</span> <span class="o">=</span> <span class="n">dotmul_operator</span><span class="p">(</span><span class="n">a</span><span class="o">=</span><span class="n">layer1</span><span class="p">,</span> <span class="n">b</span><span class="o">=</span><span class="n">layer2</span><span class="p">,</span> <span class="n">scale</span><span class="o">=</span><span class="mf">0.5</span><span class="p">)</span>
1625 1626 1627 1628 1629 1630
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
1631
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
1632 1633
<li><strong>a</strong> (<em>LayerOutput</em>) &#8211; Input layer1</li>
<li><strong>b</strong> (<em>LayerOutput</em>) &#8211; Input layer2</li>
1634 1635 1636 1637
<li><strong>scale</strong> (<em>float</em>) &#8211; config scalar, default value is one.</li>
</ul>
</td>
</tr>
1638
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">A DotMulOperator Object.</p>
1639 1640
</td>
</tr>
1641
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">DotMulOperator</p>
1642 1643 1644 1645 1646 1647
</td>
</tr>
</tbody>
</table>
</dd></dl>

Y
Yu Yang 已提交
1648 1649
</div>
<div class="section" id="full-matrix-projection">
1650
<h3>full_matrix_projection<a class="headerlink" href="#full-matrix-projection" title="永久链接至标题"></a></h3>
Y
Yu Yang 已提交
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
<dl class="function">
<dt>
<code class="descclassname">paddle.trainer_config_helpers.layers.</code><code class="descname">full_matrix_projection</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Full Matrix Projection. It performs full matrix multiplication.</p>
<div class="math">
\[out.row[i] += in.row[i] * weight\]</div>
<p>There are two styles of usage.</p>
<ol class="arabic simple">
<li>When used in mixed_layer like this, you can only set the input:</li>
</ol>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="k">with</span> <span class="n">mixed_layer</span><span class="p">(</span><span class="n">size</span><span class="o">=</span><span class="mi">100</span><span class="p">)</span> <span class="k">as</span> <span class="n">m</span><span class="p">:</span>
    <span class="n">m</span> <span class="o">+=</span> <span class="n">full_matrix_projection</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">layer</span><span class="p">)</span>
</pre></div>
</div>
<ol class="arabic simple" start="2">
<li>When used as an independant object like this, you must set the size:</li>
</ol>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">proj</span> <span class="o">=</span> <span class="n">full_matrix_projection</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">layer</span><span class="p">,</span>
                              <span class="n">size</span><span class="o">=</span><span class="mi">100</span><span class="p">,</span>
                              <span class="n">param_attr</span><span class="o">=</span><span class="n">ParamAttr</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">&#39;_proj&#39;</span><span class="p">))</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
1677
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
Y
Yu Yang 已提交
1678 1679 1680 1681 1682 1683
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; input layer</li>
<li><strong>size</strong> (<em>int</em>) &#8211; The parameter size. Means the width of parameter.</li>
<li><strong>param_attr</strong> (<a class="reference internal" href="attrs.html#paddle.trainer_config_helpers.attrs.ParameterAttribute" title="paddle.trainer_config_helpers.attrs.ParameterAttribute"><em>ParameterAttribute</em></a>) &#8211; Parameter config, None if use default.</li>
</ul>
</td>
</tr>
1684
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">A FullMatrixProjection Object.</p>
Y
Yu Yang 已提交
1685 1686
</td>
</tr>
1687
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">FullMatrixProjection</p>
Y
Yu Yang 已提交
1688 1689 1690 1691 1692 1693 1694 1695
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="identity-projection">
1696
<h3>identity_projection<a class="headerlink" href="#identity-projection" title="永久链接至标题"></a></h3>
Y
Yu Yang 已提交
1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
<dl class="function">
<dt>
<code class="descclassname">paddle.trainer_config_helpers.layers.</code><code class="descname">identity_projection</code><span class="sig-paren">(</span><em>input</em>, <em>offset=None</em><span class="sig-paren">)</span></dt>
<dd><ol class="arabic simple">
<li>IdentityProjection if offset=None. It performs:</li>
</ol>
<div class="math">
\[out.row[i] += in.row[i]\]</div>
<p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">proj</span> <span class="o">=</span> <span class="n">identity_projection</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">layer</span><span class="p">)</span>
</pre></div>
</div>
<p>2. IdentityOffsetProjection if offset!=None. It likes IdentityProjection,
but layer size may be smaller than input size.
It select dimesions [offset, offset+layer_size) from input:</p>
<div class="math">
\[out.row[i] += in.row[i + \textrm{offset}]\]</div>
<p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">proj</span> <span class="o">=</span> <span class="n">identity_projection</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">layer</span><span class="p">,</span>
                           <span class="n">offset</span><span class="o">=</span><span class="mi">10</span><span class="p">)</span>
</pre></div>
</div>
<p>Note that both of two projections should not have any parameter.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
1724
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
1725
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; Input Layer.</li>
Y
Yu Yang 已提交
1726 1727 1728 1729
<li><strong>offset</strong> (<em>int</em>) &#8211; Offset, None if use default.</li>
</ul>
</td>
</tr>
1730
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">A IdentityProjection or IdentityOffsetProjection object</p>
Y
Yu Yang 已提交
1731 1732
</td>
</tr>
1733
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">IdentityProjection or IdentityOffsetProjection</p>
Y
Yu Yang 已提交
1734 1735 1736 1737 1738 1739 1740 1741
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="table-projection">
1742
<h3>table_projection<a class="headerlink" href="#table-projection" title="永久链接至标题"></a></h3>
Y
Yu Yang 已提交
1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771
<dl class="function">
<dt>
<code class="descclassname">paddle.trainer_config_helpers.layers.</code><code class="descname">table_projection</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Table Projection. It selects rows from parameter where row_id
is in input_ids.</p>
<div class="math">
\[out.row[i] += table.row[ids[i]]\]</div>
<p>where <span class="math">\(out\)</span> is output, <span class="math">\(table\)</span> is parameter, <span class="math">\(ids\)</span> is input_ids,
and <span class="math">\(i\)</span> is row_id.</p>
<p>There are two styles of usage.</p>
<ol class="arabic simple">
<li>When used in mixed_layer like this, you can only set the input:</li>
</ol>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="k">with</span> <span class="n">mixed_layer</span><span class="p">(</span><span class="n">size</span><span class="o">=</span><span class="mi">100</span><span class="p">)</span> <span class="k">as</span> <span class="n">m</span><span class="p">:</span>
    <span class="n">m</span> <span class="o">+=</span> <span class="n">table_projection</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">layer</span><span class="p">)</span>
</pre></div>
</div>
<ol class="arabic simple" start="2">
<li>When used as an independant object like this, you must set the size:</li>
</ol>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">proj</span> <span class="o">=</span> <span class="n">table_projection</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">layer</span><span class="p">,</span>
                        <span class="n">size</span><span class="o">=</span><span class="mi">100</span><span class="p">,</span>
                        <span class="n">param_attr</span><span class="o">=</span><span class="n">ParamAttr</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">&#39;_proj&#39;</span><span class="p">))</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
1772
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
Y
Yu Yang 已提交
1773 1774 1775 1776 1777 1778
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; Input layer, which must contains id fields.</li>
<li><strong>size</strong> (<em>int</em>) &#8211; The parameter size. Means the width of parameter.</li>
<li><strong>param_attr</strong> (<a class="reference internal" href="attrs.html#paddle.trainer_config_helpers.attrs.ParameterAttribute" title="paddle.trainer_config_helpers.attrs.ParameterAttribute"><em>ParameterAttribute</em></a>) &#8211; Parameter config, None if use default.</li>
</ul>
</td>
</tr>
1779
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">A TableProjection Object.</p>
Y
Yu Yang 已提交
1780 1781
</td>
</tr>
1782
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">TableProjection</p>
Y
Yu Yang 已提交
1783 1784 1785 1786 1787 1788 1789 1790
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="trans-full-matrix-projection">
1791
<h3>trans_full_matrix_projection<a class="headerlink" href="#trans-full-matrix-projection" title="永久链接至标题"></a></h3>
Y
Yu Yang 已提交
1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
<dl class="function">
<dt>
<code class="descclassname">paddle.trainer_config_helpers.layers.</code><code class="descname">trans_full_matrix_projection</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Different from full_matrix_projection, this projection performs matrix
multiplication, using transpose of weight.</p>
<div class="math">
\[out.row[i] += in.row[i] * w^\mathrm{T}\]</div>
<p><span class="math">\(w^\mathrm{T}\)</span> means transpose of weight.
The simply usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">proj</span> <span class="o">=</span> <span class="n">trans_full_matrix_projection</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">layer</span><span class="p">,</span>
                                    <span class="n">size</span><span class="o">=</span><span class="mi">100</span><span class="p">,</span>
                                    <span class="n">param_attr</span><span class="o">=</span><span class="n">ParamAttr</span><span class="p">(</span>
                                         <span class="n">name</span><span class="o">=</span><span class="s1">&#39;_proj&#39;</span><span class="p">,</span>
                                         <span class="n">initial_mean</span><span class="o">=</span><span class="mf">0.0</span><span class="p">,</span>
                                         <span class="n">initial_std</span><span class="o">=</span><span class="mf">0.01</span><span class="p">))</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
1813
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
Y
Yu Yang 已提交
1814 1815 1816 1817 1818 1819
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; input layer</li>
<li><strong>size</strong> (<em>int</em>) &#8211; The parameter size. Means the width of parameter.</li>
<li><strong>param_attr</strong> (<a class="reference internal" href="attrs.html#paddle.trainer_config_helpers.attrs.ParameterAttribute" title="paddle.trainer_config_helpers.attrs.ParameterAttribute"><em>ParameterAttribute</em></a>) &#8211; Parameter config, None if use default.</li>
</ul>
</td>
</tr>
1820
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">A TransposedFullMatrixProjection Object.</p>
Y
Yu Yang 已提交
1821 1822
</td>
</tr>
1823
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">TransposedFullMatrixProjection</p>
Y
Yu Yang 已提交
1824 1825 1826 1827 1828 1829 1830 1831 1832
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
</div>
<div class="section" id="aggregate-layers">
1833
<h2>Aggregate Layers<a class="headerlink" href="#aggregate-layers" title="永久链接至标题"></a></h2>
Y
Yu Yang 已提交
1834
<div class="section" id="pooling-layer">
1835
<span id="api-trainer-config-helpers-layers-pooling-layer"></span><h3>pooling_layer<a class="headerlink" href="#pooling-layer" title="永久链接至标题"></a></h3>
Y
Yu Yang 已提交
1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
<dl class="function">
<dt>
<code class="descclassname">paddle.trainer_config_helpers.layers.</code><code class="descname">pooling_layer</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Pooling layer for sequence inputs, not used for Image.</p>
<p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">seq_pool</span> <span class="o">=</span> <span class="n">pooling_layer</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">layer</span><span class="p">,</span>
                         <span class="n">pooling_type</span><span class="o">=</span><span class="n">AvgPooling</span><span class="p">(),</span>
                         <span class="n">agg_level</span><span class="o">=</span><span class="n">AggregateLevel</span><span class="o">.</span><span class="n">EACH_SEQUENCE</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
1850
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
Y
Yu Yang 已提交
1851 1852
<li><strong>agg_level</strong> (<em>AggregateLevel</em>) &#8211; AggregateLevel.EACH_TIMESTEP or
AggregateLevel.EACH_SEQUENCE</li>
Y
Yu Yang 已提交
1853 1854 1855 1856 1857 1858 1859 1860 1861
<li><strong>name</strong> (<em>basestring</em>) &#8211; layer name.</li>
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; input layer name.</li>
<li><strong>pooling_type</strong> (<em>BasePoolingType|None</em>) &#8211; Type of pooling, MaxPooling(default), AvgPooling,
SumPooling, SquareRootNPooling.</li>
<li><strong>bias_attr</strong> (<em>ParameterAttribute|None|False</em>) &#8211; Bias parameter attribute. False if no bias.</li>
<li><strong>layer_attr</strong> (<em>ExtraLayerAttribute|None</em>) &#8211; The Extra Attributes for layer, such as dropout.</li>
</ul>
</td>
</tr>
1862
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">LayerOutput object.</p>
Y
Yu Yang 已提交
1863 1864
</td>
</tr>
1865
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
Y
Yu Yang 已提交
1866 1867 1868 1869 1870 1871 1872 1873
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="last-seq">
1874
<span id="api-trainer-config-helpers-layers-last-seq"></span><h3>last_seq<a class="headerlink" href="#last-seq" title="永久链接至标题"></a></h3>
Y
Yu Yang 已提交
1875 1876 1877 1878
<dl class="function">
<dt>
<code class="descclassname">paddle.trainer_config_helpers.layers.</code><code class="descname">last_seq</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Get Last Timestamp Activation of a sequence.</p>
1879 1880 1881 1882 1883 1884 1885 1886
<p>If stride &gt; 0, this layer slides a window whose size is determined by stride,
and return the last value of the window as the output. Thus, a long sequence
will be shorten. Note that for sequence with sub-sequence, the default value
of stride is -1.</p>
<p>The simple usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">seq</span> <span class="o">=</span> <span class="n">last_seq</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">layer</span><span class="p">)</span>
</pre></div>
</div>
Y
Yu Yang 已提交
1887 1888 1889 1890
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
1891
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
Y
Yu Yang 已提交
1892 1893 1894
<li><strong>agg_level</strong> &#8211; Aggregated level</li>
<li><strong>name</strong> (<em>basestring</em>) &#8211; Layer name.</li>
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; Input layer name.</li>
1895
<li><strong>stride</strong> (<em>Int</em>) &#8211; window size.</li>
Y
Yu Yang 已提交
1896 1897 1898 1899
<li><strong>layer_attr</strong> (<em>ExtraLayerAttribute.</em>) &#8211; extra layer attributes.</li>
</ul>
</td>
</tr>
1900
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">LayerOutput object.</p>
Y
Yu Yang 已提交
1901 1902
</td>
</tr>
1903
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
Y
Yu Yang 已提交
1904 1905 1906 1907 1908 1909 1910 1911
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="first-seq">
1912
<span id="api-trainer-config-helpers-layers-first-seq"></span><h3>first_seq<a class="headerlink" href="#first-seq" title="永久链接至标题"></a></h3>
Y
Yu Yang 已提交
1913 1914 1915 1916
<dl class="function">
<dt>
<code class="descclassname">paddle.trainer_config_helpers.layers.</code><code class="descname">first_seq</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Get First Timestamp Activation of a sequence.</p>
1917 1918 1919 1920 1921 1922 1923 1924
<p>If stride &gt; 0, this layer slides a window whose size is determined by stride,
and return the first value of the window as the output. Thus, a long sequence
will be shorten. Note that for sequence with sub-sequence, the default value
of stride is -1.</p>
<p>The simple usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">seq</span> <span class="o">=</span> <span class="n">first_seq</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">layer</span><span class="p">)</span>
</pre></div>
</div>
Y
Yu Yang 已提交
1925 1926 1927 1928
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
1929
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
Y
Yu Yang 已提交
1930 1931 1932
<li><strong>agg_level</strong> &#8211; aggregation level</li>
<li><strong>name</strong> (<em>basestring</em>) &#8211; Layer name.</li>
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; Input layer name.</li>
1933
<li><strong>stride</strong> (<em>Int</em>) &#8211; window size.</li>
Y
Yu Yang 已提交
1934 1935 1936 1937
<li><strong>layer_attr</strong> (<em>ExtraLayerAttribute.</em>) &#8211; extra layer attributes.</li>
</ul>
</td>
</tr>
1938
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">LayerOutput object.</p>
Y
Yu Yang 已提交
1939 1940
</td>
</tr>
1941
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
Y
Yu Yang 已提交
1942 1943 1944 1945 1946 1947 1948 1949
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="concat-layer">
1950
<h3>concat_layer<a class="headerlink" href="#concat-layer" title="永久链接至标题"></a></h3>
Y
Yu Yang 已提交
1951 1952 1953 1954 1955
<dl class="function">
<dt>
<code class="descclassname">paddle.trainer_config_helpers.layers.</code><code class="descname">concat_layer</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Concat all input vector into one huge vector.
Inputs can be list of LayerOutput or list of projection.</p>
1956 1957 1958 1959
<p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">concat</span> <span class="o">=</span> <span class="n">concat_layer</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="p">[</span><span class="n">layer1</span><span class="p">,</span> <span class="n">layer2</span><span class="p">])</span>
</pre></div>
</div>
Y
Yu Yang 已提交
1960 1961 1962 1963
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
1964
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
Y
Yu Yang 已提交
1965
<li><strong>name</strong> (<em>basestring</em>) &#8211; Layer name.</li>
1966
<li><strong>input</strong> (<em>list|tuple|collections.Sequence</em>) &#8211; input layers or projections</li>
Y
Yu Yang 已提交
1967
<li><strong>act</strong> (<em>BaseActivation</em>) &#8211; Activation type.</li>
Y
Yu Yang 已提交
1968 1969 1970 1971
<li><strong>layer_attr</strong> (<a class="reference internal" href="attrs.html#paddle.trainer_config_helpers.attrs.ExtraLayerAttribute" title="paddle.trainer_config_helpers.attrs.ExtraLayerAttribute"><em>ExtraLayerAttribute</em></a>) &#8211; Extra Layer Attribute.</li>
</ul>
</td>
</tr>
1972
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">LayerOutput object.</p>
Y
Yu Yang 已提交
1973 1974
</td>
</tr>
1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="seq-concat-layer">
<h3>seq_concat_layer<a class="headerlink" href="#seq-concat-layer" title="永久链接至标题"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.trainer_config_helpers.layers.</code><code class="descname">seq_concat_layer</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Concat sequence a with sequence b.</p>
<dl class="docutils">
<dt>Inputs:</dt>
<dd><ul class="first last simple">
<li>a = [a1, a2, ..., an]</li>
<li>b = [b1, b2, ..., bn]</li>
<li>Note that the length of a and b should be the same.</li>
</ul>
</dd>
</dl>
<p>Output: [a1, b1, a2, b2, ..., an, bn]</p>
<p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">concat</span> <span class="o">=</span> <span class="n">seq_concat_layer</span><span class="p">(</span><span class="n">a</span><span class="o">=</span><span class="n">layer1</span><span class="p">,</span> <span class="n">b</span><span class="o">=</span><span class="n">layer2</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
<li><strong>name</strong> (<em>basestring</em>) &#8211; Layer name.</li>
<li><strong>a</strong> (<em>LayerOutput</em>) &#8211; input sequence layer</li>
<li><strong>b</strong> (<em>LayerOutput</em>) &#8211; input sequence layer</li>
<li><strong>act</strong> (<em>BaseActivation</em>) &#8211; Activation type.</li>
<li><strong>layer_attr</strong> (<a class="reference internal" href="attrs.html#paddle.trainer_config_helpers.attrs.ExtraLayerAttribute" title="paddle.trainer_config_helpers.attrs.ExtraLayerAttribute"><em>ExtraLayerAttribute</em></a>) &#8211; Extra Layer Attribute.</li>
<li><strong>bias_attr</strong> (<a class="reference internal" href="attrs.html#paddle.trainer_config_helpers.attrs.ParameterAttribute" title="paddle.trainer_config_helpers.attrs.ParameterAttribute"><em>ParameterAttribute</em></a><em> or </em><em>None</em><em> or </em><em>bool</em>) &#8211; The Bias Attribute. If no bias, then pass False or
something not type of ParameterAttribute. None will get a
default Bias.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">LayerOutput object.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
Y
Yu Yang 已提交
2023 2024 2025 2026 2027 2028 2029 2030 2031
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
</div>
<div class="section" id="reshaping-layers">
2032
<h2>Reshaping Layers<a class="headerlink" href="#reshaping-layers" title="永久链接至标题"></a></h2>
Y
Yu Yang 已提交
2033
<div class="section" id="block-expand-layer">
2034
<h3>block_expand_layer<a class="headerlink" href="#block-expand-layer" title="永久链接至标题"></a></h3>
Y
Yu Yang 已提交
2035 2036 2037 2038 2039 2040
<dl class="function">
<dt>
<code class="descclassname">paddle.trainer_config_helpers.layers.</code><code class="descname">block_expand_layer</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><dl class="docutils">
<dt>Expand feature map to minibatch matrix.</dt>
<dd><ul class="first last simple">
2041
<li>matrix width is: block_y * block_x * num_channels</li>
Y
Yu Yang 已提交
2042 2043 2044 2045 2046
<li>matirx height is: outputH * outputW</li>
</ul>
</dd>
</dl>
<div class="math">
2047
\[ \begin{align}\begin{aligned}outputH = 1 + (2 * padding_y + imgSizeH - block_y + stride_y - 1) / stride_y\\outputW = 1 + (2 * padding_x + imgSizeW - block_x + stride_x - 1) / stride_x\end{aligned}\end{align} \]</div>
Y
Yu Yang 已提交
2048 2049 2050
<p>The expand method is the same with ExpandConvLayer, but saved the transposed
value. After expanding, output.sequenceStartPositions will store timeline.
The number of time steps are outputH * outputW and the dimension of each
2051
time step is block_y * block_x * num_channels. This layer can be used after
Y
Yu Yang 已提交
2052
convolution neural network, and before recurrent neural network.</p>
Y
Yu Yang 已提交
2053
<p>The simple usage is:</p>
2054
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">block_expand</span> <span class="o">=</span> <span class="n">block_expand_layer</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">layer</span><span class="p">,</span>
2055
                                  <span class="n">num_channels</span><span class="o">=</span><span class="mi">128</span><span class="p">,</span>
Y
Yu Yang 已提交
2056 2057 2058 2059 2060 2061
                                  <span class="n">stride_x</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
                                  <span class="n">stride_y</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
                                  <span class="n">block_x</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
                                  <span class="n">block_x</span><span class="o">=</span><span class="mi">3</span><span class="p">)</span>
</pre></div>
</div>
Y
Yu Yang 已提交
2062 2063 2064 2065
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
2066
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
Y
Yu Yang 已提交
2067
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; The input layer.</li>
2068
<li><strong>num_channels</strong> (<em>int|None</em>) &#8211; The channel number of input layer.</li>
Y
Yu Yang 已提交
2069 2070 2071 2072 2073 2074 2075
<li><strong>block_x</strong> (<em>int</em>) &#8211; The width of sub block.</li>
<li><strong>block_y</strong> (<em>int</em>) &#8211; The width of sub block.</li>
<li><strong>stride_x</strong> (<em>int</em>) &#8211; The stride size in horizontal direction.</li>
<li><strong>stride_y</strong> (<em>int</em>) &#8211; The stride size in vertical direction.</li>
<li><strong>padding_x</strong> (<em>int</em>) &#8211; The padding size in horizontal direction.</li>
<li><strong>padding_y</strong> (<em>int</em>) &#8211; The padding size in vertical direction.</li>
<li><strong>name</strong> (<em>None|basestring.</em>) &#8211; The name of this layer, which can not specify.</li>
2076
<li><strong>layer_attr</strong> (<em>ExtraLayerAttribute|None</em>) &#8211; Extra Layer config.</li>
Y
Yu Yang 已提交
2077 2078 2079
</ul>
</td>
</tr>
2080
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">LayerOutput object.</p>
Y
Yu Yang 已提交
2081 2082
</td>
</tr>
2083
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
Y
Yu Yang 已提交
2084 2085 2086 2087 2088 2089 2090 2091
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="expand-layer">
2092
<span id="api-trainer-config-helpers-layers-expand-layer"></span><h3>expand_layer<a class="headerlink" href="#expand-layer" title="永久链接至标题"></a></h3>
Y
Yu Yang 已提交
2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107
<dl class="function">
<dt>
<code class="descclassname">paddle.trainer_config_helpers.layers.</code><code class="descname">expand_layer</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>A layer for &#8220;Expand Dense data or (sequence data where the length of each
sequence is one) to sequence data.&#8221;</p>
<p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">expand</span> <span class="o">=</span> <span class="n">expand_layer</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">layer1</span><span class="p">,</span>
                      <span class="n">expand_as</span><span class="o">=</span><span class="n">layer2</span><span class="p">,</span>
                      <span class="n">expand_level</span><span class="o">=</span><span class="n">ExpandLevel</span><span class="o">.</span><span class="n">FROM_TIMESTEP</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
2108
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
Y
Yu Yang 已提交
2109 2110 2111 2112 2113 2114 2115 2116 2117 2118
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; Input layer</li>
<li><strong>expand_as</strong> (<em>LayerOutput</em>) &#8211; Expand as this layer&#8217;s sequence info.</li>
<li><strong>name</strong> (<em>basestring</em>) &#8211; Layer name.</li>
<li><strong>bias_attr</strong> (<em>ParameterAttribute|None|False</em>) &#8211; Bias attribute. None means default bias. False means no
bias.</li>
<li><strong>expand_level</strong> (<em>ExpandLevel</em>) &#8211; whether input layer is timestep(default) or sequence.</li>
<li><strong>layer_attr</strong> (<em>ExtraLayerAttribute.</em>) &#8211; extra layer attributes.</li>
</ul>
</td>
</tr>
2119
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">LayerOutput object.</p>
Y
Yu Yang 已提交
2120 2121
</td>
</tr>
2122
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
Y
Yu Yang 已提交
2123 2124 2125 2126 2127 2128
</td>
</tr>
</tbody>
</table>
</dd></dl>

2129 2130
</div>
<div class="section" id="repeat-layer">
2131
<h3>repeat_layer<a class="headerlink" href="#repeat-layer" title="永久链接至标题"></a></h3>
2132 2133 2134 2135 2136 2137 2138 2139
<dl class="function">
<dt>
<code class="descclassname">paddle.trainer_config_helpers.layers.</code><code class="descname">repeat_layer</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>A layer for repeating the input for num_repeats times. This is equivalent
to apply concat_layer() with num_repeats same input.</p>
<div class="math">
\[y  = [x, x, \cdots, x]\]</div>
<p>The example usage is:</p>
2140
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">expand</span> <span class="o">=</span> <span class="n">repeat_layer</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">layer</span><span class="p">,</span> <span class="n">num_repeats</span><span class="o">=</span><span class="mi">4</span><span class="p">)</span>
2141 2142 2143 2144 2145 2146
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
2147
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
2148 2149 2150 2151 2152 2153 2154
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; Input layer</li>
<li><strong>num_repeats</strong> (<em>int</em>) &#8211; Repeat the input so many times</li>
<li><strong>name</strong> (<em>basestring</em>) &#8211; Layer name.</li>
<li><strong>layer_attr</strong> (<em>ExtraLayerAttribute.</em>) &#8211; extra layer attributes.</li>
</ul>
</td>
</tr>
2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">LayerOutput object.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="rotate-layer">
<h3>rotate_layer<a class="headerlink" href="#rotate-layer" title="永久链接至标题"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.trainer_config_helpers.layers.</code><code class="descname">rotate_layer</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>A layer for rotating 90 degrees (clock-wise) for each feature channel,
usually used when the input sample is some image or feature map.</p>
<div class="math">
\[y(j,i,:) = x(M-i-1,j,:)\]</div>
<p>where <span class="math">\(x\)</span> is (M x N x C) input, and <span class="math">\(y\)</span> is (N x M x C) output.</p>
<p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">rot</span> <span class="o">=</span> <span class="n">rotate_layer</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">layer</span><span class="p">,</span>
                   <span class="n">height</span><span class="o">=</span><span class="mi">100</span><span class="p">,</span>
                   <span class="n">width</span><span class="o">=</span><span class="mi">100</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; Input layer.</li>
<li><strong>height</strong> (<em>int</em>) &#8211; The height of the sample matrix</li>
<li><strong>name</strong> (<em>basestring</em>) &#8211; Layer name.</li>
<li><strong>layer_attr</strong> (<em>ExtraLayerAttribute.</em>) &#8211; extra layer attributes.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">LayerOutput object.</p>
2195 2196
</td>
</tr>
2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="seq-reshape-layer">
<h3>seq_reshape_layer<a class="headerlink" href="#seq-reshape-layer" title="永久链接至标题"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.trainer_config_helpers.layers.</code><code class="descname">seq_reshape_layer</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>A layer for reshaping the sequence. Assume the input sequence has T instances,
the dimension of each instance is M, and the input reshape_size is N, then the
output sequence has T*M/N instances, the dimension of each instance is N.</p>
<p>Note that T*M/N must be an integer.</p>
<p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">reshape</span> <span class="o">=</span> <span class="n">seq_reshape_layer</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">layer</span><span class="p">,</span> <span class="n">reshape_size</span><span class="o">=</span><span class="mi">4</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; Input layer.</li>
<li><strong>reshape_size</strong> (<em>int</em>) &#8211; the size of reshaped sequence.</li>
<li><strong>name</strong> (<em>basestring</em>) &#8211; Layer name.</li>
<li><strong>act</strong> (<em>BaseActivation</em>) &#8211; Activation type.</li>
<li><strong>layer_attr</strong> (<em>ExtraLayerAttribute.</em>) &#8211; extra layer attributes.</li>
<li><strong>bias_attr</strong> (<a class="reference internal" href="attrs.html#paddle.trainer_config_helpers.attrs.ParameterAttribute" title="paddle.trainer_config_helpers.attrs.ParameterAttribute"><em>ParameterAttribute</em></a><em> or </em><em>None</em><em> or </em><em>bool</em>) &#8211; The Bias Attribute. If no bias, then pass False or
something not type of ParameterAttribute. None will get a
default Bias.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">LayerOutput object.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
2238 2239 2240 2241 2242 2243
</td>
</tr>
</tbody>
</table>
</dd></dl>

Y
Yu Yang 已提交
2244 2245 2246
</div>
</div>
<div class="section" id="math-layers">
2247
<h2>Math Layers<a class="headerlink" href="#math-layers" title="永久链接至标题"></a></h2>
Y
Yu Yang 已提交
2248
<div class="section" id="addto-layer">
2249
<h3>addto_layer<a class="headerlink" href="#addto-layer" title="永久链接至标题"></a></h3>
Y
Yu Yang 已提交
2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266
<dl class="function">
<dt>
<code class="descclassname">paddle.trainer_config_helpers.layers.</code><code class="descname">addto_layer</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>AddtoLayer.</p>
<div class="math">
\[y = f(\sum_{i} x_i + b)\]</div>
<p>where <span class="math">\(y\)</span> is output, <span class="math">\(x\)</span> is input, <span class="math">\(b\)</span> is bias,
and <span class="math">\(f\)</span> is activation function.</p>
<p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">addto</span> <span class="o">=</span> <span class="n">addto_layer</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="p">[</span><span class="n">layer1</span><span class="p">,</span> <span class="n">layer2</span><span class="p">],</span>
                    <span class="n">act</span><span class="o">=</span><span class="n">ReluActivation</span><span class="p">(),</span>
                    <span class="n">bias_attr</span><span class="o">=</span><span class="bp">False</span><span class="p">)</span>
</pre></div>
</div>
<p>This layer just simply add all input layers together, then activate the sum
inputs. Each input of this layer should be the same size, which is also the
output size of this layer.</p>
Y
Yu Yang 已提交
2267 2268 2269
<p>There is no weight matrix for each input, because it just a simple add
operation. If you want a complicated operation before add, please use
mixed_layer.</p>
Y
Yu Yang 已提交
2270
<p>It is a very good way to set dropout outside the layers. Since not all
Y
Yu Yang 已提交
2271 2272
PaddlePaddle layer support dropout, you can add an add_to layer, set
dropout here.
Y
Yu Yang 已提交
2273 2274 2275 2276 2277
Please refer to dropout_layer for details.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
2278
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
Y
Yu Yang 已提交
2279 2280 2281
<li><strong>name</strong> (<em>basestring</em>) &#8211; Layer name.</li>
<li><strong>input</strong> (<em>LayerOutput|list|tuple</em>) &#8211; Input layers. It could be a LayerOutput or list/tuple of
LayerOutput.</li>
Y
Yu Yang 已提交
2282
<li><strong>act</strong> (<em>BaseActivation</em>) &#8211; Activation Type, default is tanh.</li>
Y
Yu Yang 已提交
2283 2284 2285 2286 2287 2288
<li><strong>bias_attr</strong> (<em>ParameterAttribute|bool</em>) &#8211; Bias attribute. If False, means no bias. None is default
bias.</li>
<li><strong>layer_attr</strong> (<a class="reference internal" href="attrs.html#paddle.trainer_config_helpers.attrs.ExtraLayerAttribute" title="paddle.trainer_config_helpers.attrs.ExtraLayerAttribute"><em>ExtraLayerAttribute</em></a>) &#8211; Extra Layer attribute.</li>
</ul>
</td>
</tr>
2289
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">LayerOutput object.</p>
Y
Yu Yang 已提交
2290 2291
</td>
</tr>
2292
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
Y
Yu Yang 已提交
2293 2294 2295 2296 2297 2298 2299
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
2300
<div class="section" id="linear-comb-layer">
2301
<h3>linear_comb_layer<a class="headerlink" href="#linear-comb-layer" title="永久链接至标题"></a></h3>
Y
Yu Yang 已提交
2302 2303
<dl class="function">
<dt>
2304
<code class="descclassname">paddle.trainer_config_helpers.layers.</code><code class="descname">linear_comb_layer</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
Y
Yu Yang 已提交
2305
<dd><dl class="docutils">
2306
<dt>A layer for weighted sum of vectors takes two inputs.</dt>
2307
<dd><ul class="first last simple">
Y
Yu Yang 已提交
2308
<li><dl class="first docutils">
2309
<dt>Input: size of weights is M</dt>
2310
<dd>size of vectors is M*N</dd>
Y
Yu Yang 已提交
2311 2312
</dl>
</li>
2313
<li>Output: a vector of size=N</li>
Y
Yu Yang 已提交
2314 2315 2316 2317
</ul>
</dd>
</dl>
<div class="math">
2318 2319 2320 2321 2322
\[z(i) = \sum_{j=0}^{M-1} x(j) y(i+Nj)\]</div>
<p>where <span class="math">\(0 \le i \le N-1\)</span></p>
<p>Or in the matrix notation:</p>
<div class="math">
\[z = x^\mathrm{T} Y\]</div>
Y
Yu Yang 已提交
2323 2324 2325
<dl class="docutils">
<dt>In this formular:</dt>
<dd><ul class="first last simple">
2326 2327 2328
<li><span class="math">\(x\)</span>: weights</li>
<li><span class="math">\(y\)</span>: vectors.</li>
<li><span class="math">\(z\)</span>: the output.</li>
Y
Yu Yang 已提交
2329 2330 2331
</ul>
</dd>
</dl>
2332 2333
<p>Note that the above computation is for one sample. Multiple samples are
processed in one batch.</p>
Y
Yu Yang 已提交
2334
<p>The simple usage is:</p>
2335
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">linear_comb</span> <span class="o">=</span> <span class="n">linear_comb_layer</span><span class="p">(</span><span class="n">weights</span><span class="o">=</span><span class="n">weight</span><span class="p">,</span> <span class="n">vectors</span><span class="o">=</span><span class="n">vectors</span><span class="p">,</span>
Y
Yu Yang 已提交
2336 2337 2338 2339 2340 2341 2342
                                <span class="n">size</span><span class="o">=</span><span class="n">elem_dim</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
2343
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
2344 2345
<li><strong>weights</strong> (<em>LayerOutput</em>) &#8211; The weight layer.</li>
<li><strong>vectors</strong> (<em>LayerOutput</em>) &#8211; The vector layer.</li>
Y
Yu Yang 已提交
2346 2347
<li><strong>size</strong> (<em>int</em>) &#8211; the dimension of this layer.</li>
<li><strong>name</strong> (<em>basestring</em>) &#8211; The Layer Name.</li>
2348
<li><strong>layer_attr</strong> (<em>ExtraLayerAttribute|None</em>) &#8211; Extra Layer config.</li>
Y
Yu Yang 已提交
2349 2350 2351
</ul>
</td>
</tr>
2352
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">LayerOutput object.</p>
Y
Yu Yang 已提交
2353 2354
</td>
</tr>
2355
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
Y
Yu Yang 已提交
2356 2357 2358 2359 2360 2361 2362 2363
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="interpolation-layer">
2364
<h3>interpolation_layer<a class="headerlink" href="#interpolation-layer" title="永久链接至标题"></a></h3>
Y
Yu Yang 已提交
2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382
<dl class="function">
<dt>
<code class="descclassname">paddle.trainer_config_helpers.layers.</code><code class="descname">interpolation_layer</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>This layer is for linear interpolation with two inputs,
which is used in NEURAL TURING MACHINE.</p>
<div class="math">
\[y.row[i] = w[i] * x_1.row[i] + (1 - w[i]) * x_2.row[i]\]</div>
<p>where <span class="math">\(x_1\)</span> and <span class="math">\(x_2\)</span> are two (batchSize x dataDim) inputs,
<span class="math">\(w\)</span> is (batchSize x 1) weight vector, and <span class="math">\(y\)</span> is
(batchSize x dataDim) output.</p>
<p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">interpolation</span> <span class="o">=</span> <span class="n">interpolation_layer</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="p">[</span><span class="n">layer1</span><span class="p">,</span> <span class="n">layer2</span><span class="p">],</span> <span class="n">weight</span><span class="o">=</span><span class="n">layer3</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
2383
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
Y
Yu Yang 已提交
2384 2385 2386 2387 2388 2389 2390
<li><strong>input</strong> (<em>list|tuple</em>) &#8211; Input layer.</li>
<li><strong>weight</strong> (<em>LayerOutput</em>) &#8211; Weight layer.</li>
<li><strong>name</strong> (<em>basestring</em>) &#8211; Layer name.</li>
<li><strong>layer_attr</strong> (<em>ExtraLayerAttribute.</em>) &#8211; extra layer attributes.</li>
</ul>
</td>
</tr>
2391
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">LayerOutput object.</p>
Y
Yu Yang 已提交
2392 2393
</td>
</tr>
2394
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
Y
Yu Yang 已提交
2395 2396 2397 2398 2399 2400
</td>
</tr>
</tbody>
</table>
</dd></dl>

2401 2402
</div>
<div class="section" id="bilinear-interp-layer">
2403
<h3>bilinear_interp_layer<a class="headerlink" href="#bilinear-interp-layer" title="永久链接至标题"></a></h3>
2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416
<dl class="function">
<dt>
<code class="descclassname">paddle.trainer_config_helpers.layers.</code><code class="descname">bilinear_interp_layer</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>This layer is to implement bilinear interpolation on conv layer output.</p>
<p>Please refer to Wikipedia: <a class="reference external" href="https://en.wikipedia.org/wiki/Bilinear_interpolation">https://en.wikipedia.org/wiki/Bilinear_interpolation</a></p>
<p>The simple usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">bilinear</span> <span class="o">=</span> <span class="n">bilinear_interp_layer</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">layer1</span><span class="p">,</span> <span class="n">out_size_x</span><span class="o">=</span><span class="mi">64</span><span class="p">,</span> <span class="n">out_size_y</span><span class="o">=</span><span class="mi">64</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
2417
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
2418 2419 2420 2421 2422 2423 2424 2425
<li><strong>input</strong> (<em>LayerOutput.</em>) &#8211; A input layer.</li>
<li><strong>out_size_x</strong> (<em>int|None</em>) &#8211; bilinear interpolation output width.</li>
<li><strong>out_size_y</strong> (<em>int|None</em>) &#8211; bilinear interpolation output height.</li>
<li><strong>name</strong> (<em>None|basestring</em>) &#8211; The layer&#8217;s name, which cna not be specified.</li>
<li><strong>layer_attr</strong> (<a class="reference internal" href="attrs.html#paddle.trainer_config_helpers.attrs.ExtraLayerAttribute" title="paddle.trainer_config_helpers.attrs.ExtraLayerAttribute"><em>ExtraLayerAttribute</em></a>) &#8211; Extra Layer attribute.</li>
</ul>
</td>
</tr>
2426
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">LayerOutput object.</p>
2427 2428
</td>
</tr>
2429
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
2430 2431 2432 2433 2434 2435
</td>
</tr>
</tbody>
</table>
</dd></dl>

Y
Yu Yang 已提交
2436 2437
</div>
<div class="section" id="power-layer">
2438
<h3>power_layer<a class="headerlink" href="#power-layer" title="永久链接至标题"></a></h3>
Y
Yu Yang 已提交
2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455
<dl class="function">
<dt>
<code class="descclassname">paddle.trainer_config_helpers.layers.</code><code class="descname">power_layer</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>This layer applies a power function to a vector element-wise,
which is used in NEURAL TURING MACHINE.</p>
<div class="math">
\[y = x^w\]</div>
<p>where <span class="math">\(x\)</span> is a input vector, <span class="math">\(w\)</span> is scalar weight,
and <span class="math">\(y\)</span> is a output vector.</p>
<p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">power</span> <span class="o">=</span> <span class="n">power_layer</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">layer1</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="n">layer2</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
2456
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
Y
Yu Yang 已提交
2457 2458 2459 2460 2461 2462 2463
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; Input layer.</li>
<li><strong>weight</strong> (<em>LayerOutput</em>) &#8211; Weight layer.</li>
<li><strong>name</strong> (<em>basestring</em>) &#8211; Layer name.</li>
<li><strong>layer_attr</strong> (<em>ExtraLayerAttribute.</em>) &#8211; extra layer attributes.</li>
</ul>
</td>
</tr>
2464
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">LayerOutput object.</p>
Y
Yu Yang 已提交
2465 2466
</td>
</tr>
2467
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
Y
Yu Yang 已提交
2468 2469 2470 2471 2472 2473 2474 2475
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="scaling-layer">
2476
<h3>scaling_layer<a class="headerlink" href="#scaling-layer" title="永久链接至标题"></a></h3>
Y
Yu Yang 已提交
2477 2478 2479
<dl class="function">
<dt>
<code class="descclassname">paddle.trainer_config_helpers.layers.</code><code class="descname">scaling_layer</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
2480
<dd><p>A layer for multiplying input vector by weight scalar.</p>
Y
Yu Yang 已提交
2481
<div class="math">
2482 2483 2484 2485 2486
\[y  = w x\]</div>
<p>where <span class="math">\(x\)</span> is size=dataDim input, <span class="math">\(w\)</span> is size=1 weight,
and <span class="math">\(y\)</span> is size=dataDim output.</p>
<p>Note that the above computation is for one sample. Multiple samples are
processed in one batch.</p>
Y
Yu Yang 已提交
2487 2488 2489 2490 2491 2492 2493 2494
<p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">scale</span> <span class="o">=</span> <span class="n">scaling_layer</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">layer1</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="n">layer2</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
2495
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
Y
Yu Yang 已提交
2496 2497 2498 2499 2500 2501 2502
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; Input layer.</li>
<li><strong>weight</strong> (<em>LayerOutput</em>) &#8211; Weight layer.</li>
<li><strong>name</strong> (<em>basestring</em>) &#8211; Layer name.</li>
<li><strong>layer_attr</strong> (<em>ExtraLayerAttribute.</em>) &#8211; extra layer attributes.</li>
</ul>
</td>
</tr>
2503
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">LayerOutput object.</p>
Y
Yu Yang 已提交
2504 2505
</td>
</tr>
2506
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
Y
Yu Yang 已提交
2507 2508 2509 2510 2511 2512 2513 2514
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="slope-intercept-layer">
2515
<h3>slope_intercept_layer<a class="headerlink" href="#slope-intercept-layer" title="永久链接至标题"></a></h3>
Y
Yu Yang 已提交
2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530
<dl class="function">
<dt>
<code class="descclassname">paddle.trainer_config_helpers.layers.</code><code class="descname">slope_intercept_layer</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>This layer for applying a slope and an intercept to the input
element-wise. There is no activation and weight.</p>
<div class="math">
\[y = slope * x + intercept\]</div>
<p>The simple usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">scale</span> <span class="o">=</span> <span class="n">slope_intercept_layer</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="nb">input</span><span class="p">,</span> <span class="n">slope</span><span class="o">=-</span><span class="mf">1.0</span><span class="p">,</span> <span class="n">intercept</span><span class="o">=</span><span class="mf">1.0</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
2531
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
Y
Yu Yang 已提交
2532 2533 2534 2535
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; The input layer.</li>
<li><strong>name</strong> (<em>basestring</em>) &#8211; The Layer Name.</li>
<li><strong>slope</strong> (<em>float.</em>) &#8211; the scale factor.</li>
<li><strong>intercept</strong> (<em>float.</em>) &#8211; the offset.</li>
2536
<li><strong>layer_attr</strong> (<em>ExtraLayerAttribute|None</em>) &#8211; Extra Layer config.</li>
Y
Yu Yang 已提交
2537 2538 2539
</ul>
</td>
</tr>
2540
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">LayerOutput object.</p>
Y
Yu Yang 已提交
2541 2542
</td>
</tr>
2543
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
Y
Yu Yang 已提交
2544 2545 2546 2547 2548 2549 2550 2551
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="tensor-layer">
2552
<h3>tensor_layer<a class="headerlink" href="#tensor-layer" title="永久链接至标题"></a></h3>
Y
Yu Yang 已提交
2553 2554 2555 2556 2557 2558
<dl class="function">
<dt>
<code class="descclassname">paddle.trainer_config_helpers.layers.</code><code class="descname">tensor_layer</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>This layer performs tensor operation for two input.
For example, each sample:</p>
<div class="math">
2559
\[y_{i} = a * W_{i} * {b^\mathrm{T}}, i=0,1,...,K-1\]</div>
Y
Yu Yang 已提交
2560 2561 2562
<dl class="docutils">
<dt>In this formular:</dt>
<dd><ul class="first last simple">
2563 2564
<li><span class="math">\(a\)</span>: the first input contains M elements.</li>
<li><span class="math">\(b\)</span>: the second input contains N elements.</li>
Y
Yu Yang 已提交
2565 2566
<li><span class="math">\(y_{i}\)</span>: the i-th element of y.</li>
<li><span class="math">\(W_{i}\)</span>: the i-th learned weight, shape if [M, N]</li>
2567
<li><span class="math">\(b^\mathrm{T}\)</span>: the transpose of <span class="math">\(b_{2}\)</span>.</li>
Y
Yu Yang 已提交
2568 2569 2570 2571
</ul>
</dd>
</dl>
<p>The simple usage is:</p>
2572
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">tensor</span> <span class="o">=</span> <span class="n">tensor_layer</span><span class="p">(</span><span class="n">a</span><span class="o">=</span><span class="n">layer1</span><span class="p">,</span> <span class="n">b</span><span class="o">=</span><span class="n">layer2</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="mi">1000</span><span class="p">)</span>
Y
Yu Yang 已提交
2573 2574 2575 2576 2577 2578
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
2579
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
Y
Yu Yang 已提交
2580
<li><strong>name</strong> (<em>basestring</em>) &#8211; layer name</li>
2581 2582
<li><strong>a</strong> (<em>LayerOutput</em>) &#8211; Input layer a.</li>
<li><strong>b</strong> (<em>LayerOutput</em>) &#8211; input layer b.</li>
Y
Yu Yang 已提交
2583 2584
<li><strong>size</strong> (<em>int.</em>) &#8211; the layer dimension.</li>
<li><strong>act</strong> (<em>BaseActivation</em>) &#8211; Activation Type. Default is tanh.</li>
2585
<li><strong>param_attr</strong> (<a class="reference internal" href="attrs.html#paddle.trainer_config_helpers.attrs.ParameterAttribute" title="paddle.trainer_config_helpers.attrs.ParameterAttribute"><em>ParameterAttribute</em></a>) &#8211; The Parameter Attribute.</li>
Y
Yu Yang 已提交
2586 2587 2588 2589 2590 2591 2592
<li><strong>bias_attr</strong> (<em>ParameterAttribute|None|Any</em>) &#8211; The Bias Attribute. If no bias, then pass False or
something not type of ParameterAttribute. None will get a
default Bias.</li>
<li><strong>layer_attr</strong> (<em>ExtraLayerAttribute|None</em>) &#8211; Extra Layer config.</li>
</ul>
</td>
</tr>
2593
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">LayerOutput object.</p>
Y
Yu Yang 已提交
2594 2595
</td>
</tr>
2596
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
Y
Yu Yang 已提交
2597 2598 2599 2600 2601 2602
</td>
</tr>
</tbody>
</table>
</dd></dl>

2603 2604
</div>
<div class="section" id="cos-sim">
2605
<span id="api-trainer-config-helpers-layers-cos-sim"></span><h3>cos_sim<a class="headerlink" href="#cos-sim" title="永久链接至标题"></a></h3>
2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617
<dl class="function">
<dt>
<code class="descclassname">paddle.trainer_config_helpers.layers.</code><code class="descname">cos_sim</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Cosine Similarity Layer. The cosine similarity equation is here.</p>
<div class="math">
\[similarity = cos(\theta) = {\mathbf{a} \cdot \mathbf{b}
\over \|\mathbf{a}\| \|\mathbf{b}\|}\]</div>
<p>The size of a is M, size of b is M*N,
Similarity will be calculated N times by step M. The output size is
N. The scale will be multiplied to similarity.</p>
<p>Note that the above computation is for one sample. Multiple samples are
processed in one batch.</p>
2618 2619 2620 2621
<p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">cos</span> <span class="o">=</span> <span class="n">cos_sim</span><span class="p">(</span><span class="n">a</span><span class="o">=</span><span class="n">layer1</span><span class="p">,</span> <span class="n">b</span><span class="o">=</span><span class="n">layer2</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="mi">3</span><span class="p">)</span>
</pre></div>
</div>
2622 2623 2624 2625
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
2626
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
2627 2628 2629 2630 2631 2632 2633 2634 2635
<li><strong>name</strong> (<em>basestring</em>) &#8211; layer name</li>
<li><strong>a</strong> (<em>LayerOutput</em>) &#8211; input layer a</li>
<li><strong>b</strong> (<em>LayerOutput</em>) &#8211; input layer b</li>
<li><strong>scale</strong> (<em>float</em>) &#8211; scale for cosine value. default is 5.</li>
<li><strong>size</strong> (<em>int</em>) &#8211; layer size. NOTE size_a * size should equal size_b.</li>
<li><strong>layer_attr</strong> (<a class="reference internal" href="attrs.html#paddle.trainer_config_helpers.attrs.ExtraLayerAttribute" title="paddle.trainer_config_helpers.attrs.ExtraLayerAttribute"><em>ExtraLayerAttribute</em></a>) &#8211; Extra Layer Attribute.</li>
</ul>
</td>
</tr>
2636
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">LayerOutput object.</p>
2637 2638
</td>
</tr>
2639
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
2640 2641 2642 2643 2644 2645
</td>
</tr>
</tbody>
</table>
</dd></dl>

Y
Yu Yang 已提交
2646 2647
</div>
<div class="section" id="trans-layer">
2648
<h3>trans_layer<a class="headerlink" href="#trans-layer" title="永久链接至标题"></a></h3>
Y
Yu Yang 已提交
2649 2650 2651
<dl class="function">
<dt>
<code class="descclassname">paddle.trainer_config_helpers.layers.</code><code class="descname">trans_layer</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
2652
<dd><p>A layer for transposing a minibatch matrix.</p>
Y
Yu Yang 已提交
2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663
<div class="math">
\[y = x^\mathrm{T}\]</div>
<p>where <span class="math">\(x\)</span> is (M x N) input, and <span class="math">\(y\)</span> is (N x M) output.</p>
<p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">trans</span> <span class="o">=</span> <span class="n">trans_layer</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">layer</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
2664
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
Y
Yu Yang 已提交
2665 2666 2667 2668 2669 2670
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; Input layer.</li>
<li><strong>name</strong> (<em>basestring</em>) &#8211; Layer name.</li>
<li><strong>layer_attr</strong> (<em>ExtraLayerAttribute.</em>) &#8211; extra layer attributes.</li>
</ul>
</td>
</tr>
2671
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">LayerOutput object.</p>
Y
Yu Yang 已提交
2672 2673
</td>
</tr>
2674
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
Y
Yu Yang 已提交
2675 2676 2677 2678 2679 2680 2681 2682 2683
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
</div>
<div class="section" id="sampling-layers">
2684
<h2>Sampling Layers<a class="headerlink" href="#sampling-layers" title="永久链接至标题"></a></h2>
Y
Yu Yang 已提交
2685
<div class="section" id="maxid-layer">
2686
<h3>maxid_layer<a class="headerlink" href="#maxid-layer" title="永久链接至标题"></a></h3>
Y
Yu Yang 已提交
2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699
<dl class="function">
<dt>
<code class="descclassname">paddle.trainer_config_helpers.layers.</code><code class="descname">maxid_layer</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>A layer for finding the id which has the maximal value for each sample.
The result is stored in output.ids.</p>
<p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">maxid</span> <span class="o">=</span> <span class="n">maxid_layer</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">layer</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
2700
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
Y
Yu Yang 已提交
2701 2702 2703 2704 2705 2706
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; Input layer name.</li>
<li><strong>name</strong> (<em>basestring</em>) &#8211; Layer name.</li>
<li><strong>layer_attr</strong> (<em>ExtraLayerAttribute.</em>) &#8211; extra layer attributes.</li>
</ul>
</td>
</tr>
2707
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">LayerOutput object.</p>
Y
Yu Yang 已提交
2708 2709
</td>
</tr>
2710
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
Y
Yu Yang 已提交
2711 2712 2713 2714 2715 2716 2717 2718
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="sampling-id-layer">
2719
<h3>sampling_id_layer<a class="headerlink" href="#sampling-id-layer" title="永久链接至标题"></a></h3>
Y
Yu Yang 已提交
2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732
<dl class="function">
<dt>
<code class="descclassname">paddle.trainer_config_helpers.layers.</code><code class="descname">sampling_id_layer</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>A layer for sampling id from multinomial distribution from the input layer.
Sampling one id for one sample.</p>
<p>The simple usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">samping_id</span> <span class="o">=</span> <span class="n">sampling_id_layer</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="nb">input</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
2733
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
Y
Yu Yang 已提交
2734 2735
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; The input layer.</li>
<li><strong>name</strong> (<em>basestring</em>) &#8211; The Layer Name.</li>
2736
<li><strong>layer_attr</strong> (<em>ExtraLayerAttribute|None</em>) &#8211; Extra Layer config.</li>
Y
Yu Yang 已提交
2737 2738 2739
</ul>
</td>
</tr>
2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">LayerOutput object.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
</div>
<div class="section" id="slicing-and-joining-layers">
<h2>Slicing and Joining Layers<a class="headerlink" href="#slicing-and-joining-layers" title="永久链接至标题"></a></h2>
<div class="section" id="pad-layer">
<h3>pad_layer<a class="headerlink" href="#pad-layer" title="永久链接至标题"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.trainer_config_helpers.layers.</code><code class="descname">pad_layer</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>This operation pads zeros to the input data according to pad_c,pad_h
and pad_w. pad_c, pad_h, pad_w specifies the which dimension and size
of padding. And the input data shape is NCHW.</p>
<p>For example, pad_c=[2,3] means padding 2 zeros before the
input data and 3 zeros after the input data in channel dimension.
pad_h means padding zeros in height dimension. pad_w means padding zeros
in width dimension.</p>
<p>For example,</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="nb">input</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">3</span><span class="p">)</span>  <span class="o">=</span> <span class="p">[</span>
                    <span class="p">[</span> <span class="p">[[</span><span class="mi">1</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">3</span><span class="p">],</span> <span class="p">[</span><span class="mi">3</span><span class="p">,</span><span class="mi">4</span><span class="p">,</span><span class="mi">5</span><span class="p">]],</span>
                      <span class="p">[[</span><span class="mi">2</span><span class="p">,</span><span class="mi">3</span><span class="p">,</span><span class="mi">5</span><span class="p">],</span> <span class="p">[</span><span class="mi">1</span><span class="p">,</span><span class="mi">6</span><span class="p">,</span><span class="mi">7</span><span class="p">]]</span> <span class="p">],</span>
                    <span class="p">[</span> <span class="p">[[</span><span class="mi">4</span><span class="p">,</span><span class="mi">3</span><span class="p">,</span><span class="mi">1</span><span class="p">],</span> <span class="p">[</span><span class="mi">1</span><span class="p">,</span><span class="mi">8</span><span class="p">,</span><span class="mi">7</span><span class="p">]],</span>
                      <span class="p">[[</span><span class="mi">3</span><span class="p">,</span><span class="mi">8</span><span class="p">,</span><span class="mi">9</span><span class="p">],</span> <span class="p">[</span><span class="mi">2</span><span class="p">,</span><span class="mi">3</span><span class="p">,</span><span class="mi">5</span><span class="p">]]</span> <span class="p">]</span>
                  <span class="p">]</span>

<span class="n">pad_c</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">],</span> <span class="n">pad_h</span><span class="o">=</span><span class="p">[</span><span class="mi">0</span><span class="p">,</span><span class="mi">0</span><span class="p">],</span> <span class="n">pad_w</span><span class="o">=</span><span class="p">[</span><span class="mi">0</span><span class="p">,</span><span class="mi">0</span><span class="p">]</span>

<span class="n">output</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span><span class="mi">4</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">3</span><span class="p">)</span> <span class="o">=</span> <span class="p">[</span>
                    <span class="p">[</span> <span class="p">[[</span><span class="mi">0</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">0</span><span class="p">],</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">0</span><span class="p">]],</span>
                      <span class="p">[[</span><span class="mi">1</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">3</span><span class="p">],</span> <span class="p">[</span><span class="mi">3</span><span class="p">,</span><span class="mi">4</span><span class="p">,</span><span class="mi">5</span><span class="p">]],</span>
                      <span class="p">[[</span><span class="mi">2</span><span class="p">,</span><span class="mi">3</span><span class="p">,</span><span class="mi">5</span><span class="p">],</span> <span class="p">[</span><span class="mi">1</span><span class="p">,</span><span class="mi">6</span><span class="p">,</span><span class="mi">7</span><span class="p">]],</span>
                      <span class="p">[[</span><span class="mi">0</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">0</span><span class="p">],</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">0</span><span class="p">]]</span> <span class="p">],</span>
                    <span class="p">[</span> <span class="p">[[</span><span class="mi">0</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">0</span><span class="p">],</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">0</span><span class="p">]],</span>
                      <span class="p">[[</span><span class="mi">4</span><span class="p">,</span><span class="mi">3</span><span class="p">,</span><span class="mi">1</span><span class="p">],</span> <span class="p">[</span><span class="mi">1</span><span class="p">,</span><span class="mi">8</span><span class="p">,</span><span class="mi">7</span><span class="p">]],</span>
                      <span class="p">[[</span><span class="mi">3</span><span class="p">,</span><span class="mi">8</span><span class="p">,</span><span class="mi">9</span><span class="p">],</span> <span class="p">[</span><span class="mi">2</span><span class="p">,</span><span class="mi">3</span><span class="p">,</span><span class="mi">5</span><span class="p">]],</span>
                      <span class="p">[[</span><span class="mi">0</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">0</span><span class="p">],</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">0</span><span class="p">]]</span> <span class="p">]</span>
                  <span class="p">]</span>
</pre></div>
</div>
<p>The simply usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">pad</span> <span class="o">=</span> <span class="n">pad_layer</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">ipt</span><span class="p">,</span>
                <span class="n">pad_c</span><span class="o">=</span><span class="p">[</span><span class="mi">4</span><span class="p">,</span><span class="mi">4</span><span class="p">],</span>
                <span class="n">pad_h</span><span class="o">=</span><span class="p">[</span><span class="mi">0</span><span class="p">,</span><span class="mi">0</span><span class="p">],</span>
                <span class="n">pad_w</span><span class="o">=</span><span class="p">[</span><span class="mi">2</span><span class="p">,</span><span class="mi">2</span><span class="p">])</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; layer&#8217;s input.</li>
<li><strong>pad_c</strong> (<em>list|None</em>) &#8211; padding size in channel dimension.</li>
<li><strong>pad_h</strong> (<em>list|None</em>) &#8211; padding size in height dimension.</li>
<li><strong>pad_w</strong> (<em>list|None</em>) &#8211; padding size in width dimension.</li>
<li><strong>layer_attr</strong> (<a class="reference internal" href="attrs.html#paddle.trainer_config_helpers.attrs.ExtraLayerAttribute" title="paddle.trainer_config_helpers.attrs.ExtraLayerAttribute"><em>ExtraLayerAttribute</em></a>) &#8211; Extra Layer Attribute.</li>
<li><strong>name</strong> (<em>basestring</em>) &#8211; layer name.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">LayerOutput object.</p>
Y
Yu Yang 已提交
2810 2811
</td>
</tr>
2812
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
Y
Yu Yang 已提交
2813 2814 2815 2816 2817 2818 2819 2820 2821
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
</div>
<div class="section" id="cost-layers">
2822
<span id="api-trainer-config-helpers-layers-cost-layers"></span><h2>Cost Layers<a class="headerlink" href="#cost-layers" title="永久链接至标题"></a></h2>
Y
Yu Yang 已提交
2823
<div class="section" id="cross-entropy">
2824
<h3>cross_entropy<a class="headerlink" href="#cross-entropy" title="永久链接至标题"></a></h3>
Y
Yu Yang 已提交
2825 2826 2827 2828
<dl class="function">
<dt>
<code class="descclassname">paddle.trainer_config_helpers.layers.</code><code class="descname">cross_entropy</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>A loss layer for multi class entropy.</p>
2829 2830
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">cost</span> <span class="o">=</span> <span class="n">cross_entropy</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">input_layer</span><span class="p">,</span>
                     <span class="n">label</span><span class="o">=</span><span class="n">label_layer</span><span class="p">)</span>
Y
Yu Yang 已提交
2831 2832 2833 2834 2835 2836
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
2837
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
Y
Yu Yang 已提交
2838 2839 2840
<li><strong>input</strong> (<em>LayerOutput.</em>) &#8211; The first input layer.</li>
<li><strong>label</strong> &#8211; The input label.</li>
<li><strong>name</strong> (<em>None|basestring.</em>) &#8211; The name of this layers. It is not necessary.</li>
2841 2842 2843 2844 2845
<li><strong>coeff</strong> (<em>float.</em>) &#8211; The cost is multiplied with coeff.
The coefficient affects the gradient in the backward.</li>
<li><strong>weight</strong> (<em>LayerOutout</em>) &#8211; The cost of each sample is multiplied with each weight.
The weight should be a layer with size=1. Note that gradient
will not be calculated for weight.</li>
2846
<li><strong>layer_attr</strong> (<a class="reference internal" href="attrs.html#paddle.trainer_config_helpers.attrs.ExtraLayerAttribute" title="paddle.trainer_config_helpers.attrs.ExtraLayerAttribute"><em>ExtraLayerAttribute</em></a>) &#8211; Extra Layer Attribute.</li>
Y
Yu Yang 已提交
2847 2848 2849
</ul>
</td>
</tr>
2850
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">LayerOutput object.</p>
Y
Yu Yang 已提交
2851 2852
</td>
</tr>
2853
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput.</p>
Y
Yu Yang 已提交
2854 2855 2856 2857 2858 2859 2860 2861
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="cross-entropy-with-selfnorm">
2862
<h3>cross_entropy_with_selfnorm<a class="headerlink" href="#cross-entropy-with-selfnorm" title="永久链接至标题"></a></h3>
Y
Yu Yang 已提交
2863 2864 2865
<dl class="function">
<dt>
<code class="descclassname">paddle.trainer_config_helpers.layers.</code><code class="descname">cross_entropy_with_selfnorm</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
2866 2867
<dd><p>A loss layer for multi class entropy with selfnorm.
Input should be a vector of positive numbers, without normalization.</p>
2868 2869
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">cost</span> <span class="o">=</span> <span class="n">cross_entropy_with_selfnorm</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">input_layer</span><span class="p">,</span>
                                   <span class="n">label</span><span class="o">=</span><span class="n">label_layer</span><span class="p">)</span>
Y
Yu Yang 已提交
2870 2871 2872 2873 2874 2875
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
2876
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
Y
Yu Yang 已提交
2877 2878 2879 2880 2881
<li><strong>input</strong> (<em>LayerOutput.</em>) &#8211; The first input layer.</li>
<li><strong>label</strong> &#8211; The input label.</li>
<li><strong>name</strong> (<em>None|basestring.</em>) &#8211; The name of this layers. It is not necessary.</li>
<li><strong>coeff</strong> (<em>float.</em>) &#8211; The coefficient affects the gradient in the backward.</li>
<li><strong>softmax_selfnorm_alpha</strong> (<em>float.</em>) &#8211; The scale factor affects the cost.</li>
2882
<li><strong>layer_attr</strong> (<a class="reference internal" href="attrs.html#paddle.trainer_config_helpers.attrs.ExtraLayerAttribute" title="paddle.trainer_config_helpers.attrs.ExtraLayerAttribute"><em>ExtraLayerAttribute</em></a>) &#8211; Extra Layer Attribute.</li>
Y
Yu Yang 已提交
2883 2884 2885
</ul>
</td>
</tr>
2886
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">LayerOutput object.</p>
Y
Yu Yang 已提交
2887 2888
</td>
</tr>
2889
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput.</p>
Y
Yu Yang 已提交
2890 2891 2892 2893 2894 2895 2896 2897
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="multi-binary-label-cross-entropy">
2898
<h3>multi_binary_label_cross_entropy<a class="headerlink" href="#multi-binary-label-cross-entropy" title="永久链接至标题"></a></h3>
Y
Yu Yang 已提交
2899 2900 2901 2902
<dl class="function">
<dt>
<code class="descclassname">paddle.trainer_config_helpers.layers.</code><code class="descname">multi_binary_label_cross_entropy</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>A loss layer for multi binary label cross entropy.</p>
2903 2904
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">cost</span> <span class="o">=</span> <span class="n">multi_binary_label_cross_entropy</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">input_layer</span><span class="p">,</span>
                                        <span class="n">label</span><span class="o">=</span><span class="n">label_layer</span><span class="p">)</span>
Y
Yu Yang 已提交
2905 2906 2907 2908 2909 2910
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
2911
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
Y
Yu Yang 已提交
2912 2913 2914 2915 2916
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; The first input layer.</li>
<li><strong>label</strong> &#8211; The input label.</li>
<li><strong>type</strong> (<em>basestring</em>) &#8211; The type of cost.</li>
<li><strong>name</strong> (<em>None|basestring</em>) &#8211; The name of this layers. It is not necessary.</li>
<li><strong>coeff</strong> (<em>float</em>) &#8211; The coefficient affects the gradient in the backward.</li>
2917
<li><strong>layer_attr</strong> (<a class="reference internal" href="attrs.html#paddle.trainer_config_helpers.attrs.ExtraLayerAttribute" title="paddle.trainer_config_helpers.attrs.ExtraLayerAttribute"><em>ExtraLayerAttribute</em></a>) &#8211; Extra Layer Attribute.</li>
Y
Yu Yang 已提交
2918 2919 2920
</ul>
</td>
</tr>
2921
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">LayerOutput object.</p>
Y
Yu Yang 已提交
2922 2923
</td>
</tr>
2924
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
Y
Yu Yang 已提交
2925 2926 2927 2928 2929 2930
</td>
</tr>
</tbody>
</table>
</dd></dl>

2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979
</div>
<div class="section" id="mse-cost">
<h3>mse_cost<a class="headerlink" href="#mse-cost" title="永久链接至标题"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.trainer_config_helpers.layers.</code><code class="descname">mse_cost</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><blockquote>
<div><p>mean squared error cost:</p>
<div class="math">
\[\]</div>
</div></blockquote>
<p>rac{1}{N}sum_{i=1}^N(t_i-y_i)^2</p>
<blockquote>
<div><table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">param name:</th><td class="field-body">layer name.</td>
</tr>
<tr class="field-even field"><th class="field-name">type name:</th><td class="field-body">basestring</td>
</tr>
<tr class="field-odd field"><th class="field-name">param input:</th><td class="field-body">Network prediction.</td>
</tr>
<tr class="field-even field"><th class="field-name">type input:</th><td class="field-body">LayerOutput</td>
</tr>
<tr class="field-odd field"><th class="field-name">param label:</th><td class="field-body">Data label.</td>
</tr>
<tr class="field-even field"><th class="field-name">type label:</th><td class="field-body">LayerOutput</td>
</tr>
<tr class="field-odd field"><th class="field-name">param weight:</th><td class="field-body">The weight affects the cost, namely the scale of cost.
It is an optional argument.</td>
</tr>
<tr class="field-even field"><th class="field-name">type weight:</th><td class="field-body">LayerOutput</td>
</tr>
<tr class="field-odd field"><th class="field-name" colspan="2">param layer_attr:</th></tr>
<tr class="field-odd field"><td>&#160;</td><td class="field-body">layer&#8217;s extra attribute.</td>
</tr>
<tr class="field-even field"><th class="field-name" colspan="2">type layer_attr:</th></tr>
<tr class="field-even field"><td>&#160;</td><td class="field-body">ExtraLayerAttribute</td>
</tr>
<tr class="field-odd field"><th class="field-name">return:</th><td class="field-body">LayerOutput object.</td>
</tr>
<tr class="field-even field"><th class="field-name">rtype:</th><td class="field-body">LayerOutput</td>
</tr>
</tbody>
</table>
</div></blockquote>
</dd></dl>

Y
Yu Yang 已提交
2980 2981
</div>
<div class="section" id="huber-cost">
2982
<h3>huber_cost<a class="headerlink" href="#huber-cost" title="永久链接至标题"></a></h3>
Y
Yu Yang 已提交
2983 2984 2985 2986
<dl class="function">
<dt>
<code class="descclassname">paddle.trainer_config_helpers.layers.</code><code class="descname">huber_cost</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>A loss layer for huber loss.</p>
2987 2988
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">cost</span> <span class="o">=</span> <span class="n">huber_cost</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">input_layer</span><span class="p">,</span>
                  <span class="n">label</span><span class="o">=</span><span class="n">label_layer</span><span class="p">)</span>
Y
Yu Yang 已提交
2989 2990 2991 2992 2993 2994
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
2995
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
Y
Yu Yang 已提交
2996 2997 2998 2999
<li><strong>input</strong> (<em>LayerOutput.</em>) &#8211; The first input layer.</li>
<li><strong>label</strong> &#8211; The input label.</li>
<li><strong>name</strong> (<em>None|basestring.</em>) &#8211; The name of this layers. It is not necessary.</li>
<li><strong>coeff</strong> (<em>float.</em>) &#8211; The coefficient affects the gradient in the backward.</li>
3000
<li><strong>layer_attr</strong> (<a class="reference internal" href="attrs.html#paddle.trainer_config_helpers.attrs.ExtraLayerAttribute" title="paddle.trainer_config_helpers.attrs.ExtraLayerAttribute"><em>ExtraLayerAttribute</em></a>) &#8211; Extra Layer Attribute.</li>
Y
Yu Yang 已提交
3001 3002 3003
</ul>
</td>
</tr>
3004
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">LayerOutput object.</p>
Y
Yu Yang 已提交
3005 3006
</td>
</tr>
3007
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput.</p>
Y
Yu Yang 已提交
3008 3009 3010 3011 3012 3013 3014 3015
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="lambda-cost">
3016
<h3>lambda_cost<a class="headerlink" href="#lambda-cost" title="永久链接至标题"></a></h3>
Y
Yu Yang 已提交
3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031
<dl class="function">
<dt>
<code class="descclassname">paddle.trainer_config_helpers.layers.</code><code class="descname">lambda_cost</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>lambdaCost for lambdaRank LTR approach.</p>
<p>The simple usage:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">cost</span> <span class="o">=</span> <span class="n">lambda_cost</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="nb">input</span><span class="p">,</span>
                   <span class="n">score</span><span class="o">=</span><span class="n">score</span><span class="p">,</span>
                   <span class="n">NDCG_num</span><span class="o">=</span><span class="mi">8</span><span class="p">,</span>
                   <span class="n">max_sort_size</span><span class="o">=-</span><span class="mi">1</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
3032
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
3033
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; Samples of the same query should be loaded as sequence.</li>
Y
Yu Yang 已提交
3034 3035 3036 3037 3038 3039 3040 3041
<li><strong>score</strong> &#8211; The 2nd input. Score of each sample.</li>
<li><strong>NDCG_num</strong> (<em>int</em>) &#8211; The size of NDCG (Normalized Discounted Cumulative Gain),
e.g., 5 for NDCG&#64;5. It must be less than for equal to the
minimum size of lists.</li>
<li><strong>max_sort_size</strong> (<em>int</em>) &#8211; The size of partial sorting in calculating gradient.
If max_sort_size = -1, then for each list, the
algorithm will sort the entire list to get gradient.
In other cases, max_sort_size must be greater than or
Y
Yu Yang 已提交
3042 3043 3044
equal to NDCG_num. And if max_sort_size is greater
than the size of a list, the algorithm will sort the
entire list of get gradient.</li>
Y
Yu Yang 已提交
3045
<li><strong>name</strong> (<em>None|basestring</em>) &#8211; The name of this layers. It is not necessary.</li>
3046
<li><strong>layer_attr</strong> (<a class="reference internal" href="attrs.html#paddle.trainer_config_helpers.attrs.ExtraLayerAttribute" title="paddle.trainer_config_helpers.attrs.ExtraLayerAttribute"><em>ExtraLayerAttribute</em></a>) &#8211; Extra Layer Attribute.</li>
Y
Yu Yang 已提交
3047 3048 3049
</ul>
</td>
</tr>
3050
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">LayerOutput object.</p>
Y
Yu Yang 已提交
3051 3052
</td>
</tr>
3053
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
Y
Yu Yang 已提交
3054 3055 3056 3057 3058 3059 3060 3061
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="rank-cost">
3062
<h3>rank_cost<a class="headerlink" href="#rank-cost" title="永久链接至标题"></a></h3>
Y
Yu Yang 已提交
3063 3064 3065
<dl class="function">
<dt>
<code class="descclassname">paddle.trainer_config_helpers.layers.</code><code class="descname">rank_cost</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
Y
Yu Yang 已提交
3066
<dd><p>A cost Layer for learning to rank using gradient descent. Details can refer
Y
Yu Yang 已提交
3067 3068 3069 3070
to <a class="reference external" href="http://research.microsoft.com/en-us/um/people/cburges/papers/ICML_ranking.pdf">papers</a>.
This layer contains at least three inputs. The weight is an optional
argument, which affects the cost.</p>
<div class="math">
3071
\[ \begin{align}\begin{aligned}C_{i,j} &amp; = -\tilde{P_{ij}} * o_{i,j} + log(1 + e^{o_{i,j}})\\o_{i,j} &amp; =  o_i - o_j\\\tilde{P_{i,j}} &amp; = \{0, 0.5, 1\} \ or \ \{0, 1\}\end{aligned}\end{align} \]</div>
Y
Yu Yang 已提交
3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092
<dl class="docutils">
<dt>In this formula:</dt>
<dd><ul class="first last simple">
<li><span class="math">\(C_{i,j}\)</span> is the cross entropy cost.</li>
<li><span class="math">\(\tilde{P_{i,j}}\)</span> is the label. 1 means positive order
and 0 means reverse order.</li>
<li><span class="math">\(o_i\)</span> and <span class="math">\(o_j\)</span>: the left output and right output.
Their dimension is one.</li>
</ul>
</dd>
</dl>
<p>The simple usage:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">cost</span> <span class="o">=</span> <span class="n">rank_cost</span><span class="p">(</span><span class="n">left</span><span class="o">=</span><span class="n">out_left</span><span class="p">,</span>
                 <span class="n">right</span><span class="o">=</span><span class="n">out_right</span><span class="p">,</span>
                 <span class="n">label</span><span class="o">=</span><span class="n">label</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
3093
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
Y
Yu Yang 已提交
3094 3095 3096 3097 3098 3099 3100
<li><strong>left</strong> (<em>LayerOutput</em>) &#8211; The first input, the size of this layer is 1.</li>
<li><strong>right</strong> (<em>LayerOutput</em>) &#8211; The right input, the size of this layer is 1.</li>
<li><strong>label</strong> (<em>LayerOutput</em>) &#8211; Label is 1 or 0, means positive order and reverse order.</li>
<li><strong>weight</strong> (<em>LayerOutput</em>) &#8211; The weight affects the cost, namely the scale of cost.
It is an optional argument.</li>
<li><strong>name</strong> (<em>None|basestring</em>) &#8211; The name of this layers. It is not necessary.</li>
<li><strong>coeff</strong> (<em>float</em>) &#8211; The coefficient affects the gradient in the backward.</li>
3101
<li><strong>layer_attr</strong> (<a class="reference internal" href="attrs.html#paddle.trainer_config_helpers.attrs.ExtraLayerAttribute" title="paddle.trainer_config_helpers.attrs.ExtraLayerAttribute"><em>ExtraLayerAttribute</em></a>) &#8211; Extra Layer Attribute.</li>
Y
Yu Yang 已提交
3102 3103 3104
</ul>
</td>
</tr>
3105
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">LayerOutput object.</p>
Y
Yu Yang 已提交
3106 3107
</td>
</tr>
3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="sum-cost">
<h3>sum_cost<a class="headerlink" href="#sum-cost" title="永久链接至标题"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.trainer_config_helpers.layers.</code><code class="descname">sum_cost</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>A loss layer which calculate the sum of the input as loss</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">cost</span> <span class="o">=</span> <span class="n">sum_cost</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">input_layer</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
<li><strong>input</strong> (<em>LayerOutput.</em>) &#8211; The first input layer.</li>
<li><strong>name</strong> (<em>None|basestring.</em>) &#8211; The name of this layers. It is not necessary.</li>
<li><strong>layer_attr</strong> (<a class="reference internal" href="attrs.html#paddle.trainer_config_helpers.attrs.ExtraLayerAttribute" title="paddle.trainer_config_helpers.attrs.ExtraLayerAttribute"><em>ExtraLayerAttribute</em></a>) &#8211; Extra Layer Attribute.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">LayerOutput object.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput.</p>
Y
Yu Yang 已提交
3140 3141 3142 3143 3144 3145 3146 3147
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="crf-layer">
3148
<h3>crf_layer<a class="headerlink" href="#crf-layer" title="永久链接至标题"></a></h3>
Y
Yu Yang 已提交
3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163
<dl class="function">
<dt>
<code class="descclassname">paddle.trainer_config_helpers.layers.</code><code class="descname">crf_layer</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>A layer for calculating the cost of sequential conditional random
field model.</p>
<p>The simple usage:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">crf</span> <span class="o">=</span> <span class="n">crf_layer</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="nb">input</span><span class="p">,</span>
                <span class="n">label</span><span class="o">=</span><span class="n">label</span><span class="p">,</span>
                <span class="n">size</span><span class="o">=</span><span class="n">label_dim</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
3164
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
Y
Yu Yang 已提交
3165
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; The first input layer is the feature.</li>
3166
<li><strong>label</strong> (<em>LayerOutput</em>) &#8211; The second input layer is label.</li>
Y
Yu Yang 已提交
3167 3168 3169 3170 3171
<li><strong>size</strong> (<em>int</em>) &#8211; The category number.</li>
<li><strong>weight</strong> (<em>LayerOutput</em>) &#8211; The third layer is &#8220;weight&#8221; of each sample, which is an
optional argument.</li>
<li><strong>param_attr</strong> (<a class="reference internal" href="attrs.html#paddle.trainer_config_helpers.attrs.ParameterAttribute" title="paddle.trainer_config_helpers.attrs.ParameterAttribute"><em>ParameterAttribute</em></a>) &#8211; Parameter attribute. None means default attribute</li>
<li><strong>name</strong> (<em>None|basestring</em>) &#8211; The name of this layers. It is not necessary.</li>
3172
<li><strong>layer_attr</strong> (<em>ExtraLayerAttribute|None</em>) &#8211; Extra Layer config.</li>
Y
Yu Yang 已提交
3173 3174 3175
</ul>
</td>
</tr>
3176
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">LayerOutput object.</p>
Y
Yu Yang 已提交
3177 3178
</td>
</tr>
3179
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
Y
Yu Yang 已提交
3180 3181 3182 3183 3184 3185 3186 3187
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="crf-decoding-layer">
3188
<h3>crf_decoding_layer<a class="headerlink" href="#crf-decoding-layer" title="永久链接至标题"></a></h3>
Y
Yu Yang 已提交
3189 3190 3191 3192 3193 3194 3195 3196
<dl class="function">
<dt>
<code class="descclassname">paddle.trainer_config_helpers.layers.</code><code class="descname">crf_decoding_layer</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>A layer for calculating the decoding sequence of sequential conditional
random field model. The decoding sequence is stored in output.ids.
If a second input is provided, it is treated as the ground-truth label, and
this layer will also calculate error. output.value[i] is 1 for incorrect
decoding or 0 for correct decoding.</p>
3197 3198 3199 3200 3201
<p>The simple usage:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">crf_decoding</span> <span class="o">=</span> <span class="n">crf_decoding_layer</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="nb">input</span><span class="p">,</span>
                                  <span class="n">size</span><span class="o">=</span><span class="n">label_dim</span><span class="p">)</span>
</pre></div>
</div>
Y
Yu Yang 已提交
3202 3203 3204 3205
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
3206
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
Y
Yu Yang 已提交
3207 3208
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; The first input layer.</li>
<li><strong>size</strong> (<em>int</em>) &#8211; size of this layer.</li>
3209
<li><strong>label</strong> (<em>LayerOutput</em><em> or </em><em>None</em>) &#8211; None or ground-truth label.</li>
Y
Yu Yang 已提交
3210 3211
<li><strong>param_attr</strong> (<a class="reference internal" href="attrs.html#paddle.trainer_config_helpers.attrs.ParameterAttribute" title="paddle.trainer_config_helpers.attrs.ParameterAttribute"><em>ParameterAttribute</em></a>) &#8211; Parameter attribute. None means default attribute</li>
<li><strong>name</strong> (<em>None|basestring</em>) &#8211; The name of this layers. It is not necessary.</li>
3212
<li><strong>layer_attr</strong> (<em>ExtraLayerAttribute|None</em>) &#8211; Extra Layer config.</li>
Y
Yu Yang 已提交
3213 3214 3215
</ul>
</td>
</tr>
3216
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">LayerOutput object.</p>
Y
Yu Yang 已提交
3217 3218
</td>
</tr>
3219
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
Y
Yu Yang 已提交
3220 3221 3222 3223 3224 3225 3226 3227
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="ctc-layer">
3228
<h3>ctc_layer<a class="headerlink" href="#ctc-layer" title="永久链接至标题"></a></h3>
Y
Yu Yang 已提交
3229 3230 3231 3232 3233 3234
<dl class="function">
<dt>
<code class="descclassname">paddle.trainer_config_helpers.layers.</code><code class="descname">ctc_layer</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Connectionist Temporal Classification (CTC) is designed for temporal
classication task. That is, for sequence labeling problems where the
alignment between the inputs and the target labels is unknown.</p>
3235 3236 3237 3238
<p>More details can be found by referring to <a class="reference external" href="http://machinelearning.wustl.edu/mlpapers/paper_files/icml2006_GravesFGS06.pdf">Connectionist Temporal
Classification: Labelling Unsegmented Sequence Data with Recurrent
Neural Networks</a></p>
<div class="admonition note">
3239
<p class="first admonition-title">注解</p>
3240 3241 3242 3243 3244 3245
<p class="last">Considering the &#8216;blank&#8217; label needed by CTC, you need to use
(num_classes + 1) as the input size. num_classes is the category number.
And the &#8216;blank&#8217; is the last category index. So the size of &#8216;input&#8217; layer, such as
fc_layer with softmax activation, should be num_classes + 1. The size of ctc_layer
should also be num_classes + 1.</p>
</div>
Y
Yu Yang 已提交
3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256
<p>The simple usage:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">ctc</span> <span class="o">=</span> <span class="n">ctc_layer</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="nb">input</span><span class="p">,</span>
                <span class="n">label</span><span class="o">=</span><span class="n">label</span><span class="p">,</span>
                <span class="n">size</span><span class="o">=</span><span class="mi">9055</span><span class="p">,</span>
                <span class="n">norm_by_times</span><span class="o">=</span><span class="bp">True</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
3257
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
3258
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; The input layer.</li>
Y
Yu Yang 已提交
3259
<li><strong>label</strong> (<em>LayerOutput</em>) &#8211; The data layer of label with variable length.</li>
3260
<li><strong>size</strong> (<em>int</em>) &#8211; category numbers + 1.</li>
3261
<li><strong>name</strong> (<em>basestring|None</em>) &#8211; The name of this layer</li>
Y
Yu Yang 已提交
3262
<li><strong>norm_by_times</strong> (<em>bool</em>) &#8211; Whether to normalization by times. False by default.</li>
3263
<li><strong>layer_attr</strong> (<em>ExtraLayerAttribute|None</em>) &#8211; Extra Layer config.</li>
Y
Yu Yang 已提交
3264 3265 3266
</ul>
</td>
</tr>
3267
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">LayerOutput object.</p>
Y
Yu Yang 已提交
3268 3269
</td>
</tr>
3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="warp-ctc-layer">
<h3>warp_ctc_layer<a class="headerlink" href="#warp-ctc-layer" title="永久链接至标题"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.trainer_config_helpers.layers.</code><code class="descname">warp_ctc_layer</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>A layer intergrating the open-source <cite>warp-ctc
&lt;https://github.com/baidu-research/warp-ctc&gt;</cite> library, which is used in
<cite>Deep Speech 2: End-toEnd Speech Recognition in English and Mandarin
&lt;https://arxiv.org/pdf/1512.02595v1.pdf&gt;</cite>, to compute Connectionist Temporal
Classification (CTC) loss.</p>
<p>More details of CTC can be found by referring to <a class="reference external" href="http://machinelearning.wustl.edu/mlpapers/paper_files/icml2006_GravesFGS06.pdf">Connectionist Temporal
Classification: Labelling Unsegmented Sequence Data with Recurrent
Neural Networks</a></p>
<div class="admonition note">
<p class="first admonition-title">注解</p>
<ul class="last simple">
<li>Let num_classes represent the category number. Considering the &#8216;blank&#8217;
label needed by CTC, you need to use (num_classes + 1) as the input
size. Thus, the size of both warp_ctc_layer and &#8216;input&#8217; layer should
be set to num_classes + 1.</li>
<li>You can set &#8216;blank&#8217; to any value ranged in [0, num_classes], which
should be consistent as that used in your labels.</li>
<li>As a native &#8216;softmax&#8217; activation is interated to the warp-ctc library,
&#8216;linear&#8217; activation is expected instead in the &#8216;input&#8217; layer.</li>
</ul>
</div>
<p>The simple usage:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">ctc</span> <span class="o">=</span> <span class="n">warp_ctc_layer</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="nb">input</span><span class="p">,</span>
                     <span class="n">label</span><span class="o">=</span><span class="n">label</span><span class="p">,</span>
                     <span class="n">size</span><span class="o">=</span><span class="mi">1001</span><span class="p">,</span>
                     <span class="n">blank</span><span class="o">=</span><span class="mi">1000</span><span class="p">,</span>
                     <span class="n">norm_by_times</span><span class="o">=</span><span class="bp">False</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; The input layer.</li>
<li><strong>label</strong> (<em>LayerOutput</em>) &#8211; The data layer of label with variable length.</li>
<li><strong>size</strong> (<em>int</em>) &#8211; category numbers + 1.</li>
<li><strong>name</strong> (<em>basestring|None</em>) &#8211; The name of this layer, which can not specify.</li>
<li><strong>blank</strong> (<em>int</em>) &#8211; the &#8216;blank&#8217; label used in ctc</li>
<li><strong>norm_by_times</strong> (<em>bool</em>) &#8211; Whether to normalization by times. False by default.</li>
<li><strong>layer_attr</strong> (<em>ExtraLayerAttribute|None</em>) &#8211; Extra Layer config.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">LayerOutput object.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
Y
Yu Yang 已提交
3331 3332 3333 3334 3335 3336
</td>
</tr>
</tbody>
</table>
</dd></dl>

3337 3338
</div>
<div class="section" id="nce-layer">
3339
<h3>nce_layer<a class="headerlink" href="#nce-layer" title="永久链接至标题"></a></h3>
3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354
<dl class="function">
<dt>
<code class="descclassname">paddle.trainer_config_helpers.layers.</code><code class="descname">nce_layer</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Noise-contrastive estimation.
Implements the method in the following paper:
A fast and simple algorithm for training neural probabilistic language models.</p>
<p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">cost</span> <span class="o">=</span> <span class="n">nce_layer</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">layer1</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="n">layer2</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="n">layer3</span><span class="p">,</span>
                 <span class="n">num_classes</span><span class="o">=</span><span class="mi">3</span><span class="p">,</span> <span class="n">neg_distribution</span><span class="o">=</span><span class="p">[</span><span class="mf">0.1</span><span class="p">,</span><span class="mf">0.3</span><span class="p">,</span><span class="mf">0.6</span><span class="p">])</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
3355
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
3356 3357 3358 3359 3360
<li><strong>name</strong> (<em>basestring</em>) &#8211; layer name</li>
<li><strong>input</strong> (<em>LayerOutput|list|tuple|collections.Sequence</em>) &#8211; input layers. It could be a LayerOutput of list/tuple of LayerOutput.</li>
<li><strong>label</strong> (<em>LayerOutput</em>) &#8211; label layer</li>
<li><strong>weight</strong> (<em>LayerOutput</em>) &#8211; weight layer, can be None(default)</li>
<li><strong>num_classes</strong> (<em>int</em>) &#8211; number of classes.</li>
3361
<li><strong>act</strong> (<em>BaseActivation</em>) &#8211; Activation, default is Sigmoid.</li>
3362 3363 3364 3365 3366 3367 3368 3369 3370
<li><strong>num_neg_samples</strong> (<em>int</em>) &#8211; number of negative samples. Default is 10.</li>
<li><strong>neg_distribution</strong> (<em>list|tuple|collections.Sequence|None</em>) &#8211; The distribution for generating the random negative labels.
A uniform distribution will be used if not provided.
If not None, its length must be equal to num_classes.</li>
<li><strong>bias_attr</strong> (<em>ParameterAttribute|None|False</em>) &#8211; Bias parameter attribute. True if no bias.</li>
<li><strong>layer_attr</strong> (<a class="reference internal" href="attrs.html#paddle.trainer_config_helpers.attrs.ExtraLayerAttribute" title="paddle.trainer_config_helpers.attrs.ExtraLayerAttribute"><em>ExtraLayerAttribute</em></a>) &#8211; Extra Layer Attribute.</li>
</ul>
</td>
</tr>
3371
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">layer name.</p>
3372 3373
</td>
</tr>
3374
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
3375 3376 3377 3378 3379 3380
</td>
</tr>
</tbody>
</table>
</dd></dl>

Y
Yu Yang 已提交
3381 3382
</div>
<div class="section" id="hsigmoid">
3383
<h3>hsigmoid<a class="headerlink" href="#hsigmoid" title="永久链接至标题"></a></h3>
Y
Yu Yang 已提交
3384 3385 3386 3387 3388 3389 3390 3391 3392
<dl class="function">
<dt>
<code class="descclassname">paddle.trainer_config_helpers.layers.</code><code class="descname">hsigmoid</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Organize the classes into a binary tree. At each node, a sigmoid function
is used to calculate the probability of belonging to the right branch.
This idea is from &#8220;F. Morin, Y. Bengio (AISTATS 05):
Hierarchical Probabilistic Neural Network Language Model.&#8221;</p>
<p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">cost</span> <span class="o">=</span> <span class="n">hsigmoid</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="p">[</span><span class="n">layer1</span><span class="p">,</span> <span class="n">layer2</span><span class="p">],</span>
3393
                <span class="n">label</span><span class="o">=</span><span class="n">data_layer</span><span class="p">)</span>
Y
Yu Yang 已提交
3394 3395 3396 3397 3398 3399
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
3400
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
Y
Yu Yang 已提交
3401 3402 3403
<li><strong>input</strong> (<em>LayerOutput|list|tuple</em>) &#8211; Input layers. It could be a LayerOutput or list/tuple of
LayerOutput.</li>
<li><strong>label</strong> (<em>LayerOutput</em>) &#8211; Label layer.</li>
3404
<li><strong>num_classes</strong> (<em>int|None</em>) &#8211; number of classes.</li>
Y
Yu Yang 已提交
3405
<li><strong>name</strong> (<em>basestring</em>) &#8211; layer name</li>
Y
Yu Yang 已提交
3406 3407
<li><strong>bias_attr</strong> (<em>ParameterAttribute|False</em>) &#8211; Bias attribute. None means default bias.
False means no bias.</li>
3408
<li><strong>param_attr</strong> (<em>ParameterAttribute|None</em>) &#8211; Parameter Attribute. None means default parameter.</li>
Y
Yu Yang 已提交
3409 3410 3411 3412
<li><strong>layer_attr</strong> (<a class="reference internal" href="attrs.html#paddle.trainer_config_helpers.attrs.ExtraLayerAttribute" title="paddle.trainer_config_helpers.attrs.ExtraLayerAttribute"><em>ExtraLayerAttribute</em></a>) &#8211; Extra Layer Attribute.</li>
</ul>
</td>
</tr>
3413
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">LayerOutput object.</p>
Y
Yu Yang 已提交
3414 3415
</td>
</tr>
3416
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
3417 3418 3419 3420 3421 3422
</td>
</tr>
</tbody>
</table>
</dd></dl>

Y
Yu Yang 已提交
3423 3424 3425
</div>
</div>
<div class="section" id="check-layer">
3426
<h2>Check Layer<a class="headerlink" href="#check-layer" title="永久链接至标题"></a></h2>
Y
Yu Yang 已提交
3427
<div class="section" id="eos-layer">
3428
<h3>eos_layer<a class="headerlink" href="#eos-layer" title="永久链接至标题"></a></h3>
Y
Yu Yang 已提交
3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443
<dl class="function">
<dt>
<code class="descclassname">paddle.trainer_config_helpers.layers.</code><code class="descname">eos_layer</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>A layer for checking EOS for each sample:
- output_id = (input_id == conf.eos_id)</p>
<p>The result is stored in output_.ids.
It is used by recurrent layer group.</p>
<p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">eos</span> <span class="o">=</span> <span class="n">eos_layer</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">layer</span><span class="p">,</span> <span class="n">eos_id</span><span class="o">=</span><span class="nb">id</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
3444
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
Y
Yu Yang 已提交
3445
<li><strong>name</strong> (<em>basestring</em>) &#8211; Layer name.</li>
Y
Yu Yang 已提交
3446 3447 3448 3449 3450 3451
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; Input layer name.</li>
<li><strong>eos_id</strong> (<em>int</em>) &#8211; end id of sequence</li>
<li><strong>layer_attr</strong> (<em>ExtraLayerAttribute.</em>) &#8211; extra layer attributes.</li>
</ul>
</td>
</tr>
3452
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">LayerOutput object.</p>
Y
Yu Yang 已提交
3453 3454
</td>
</tr>
3455
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
Y
Yu Yang 已提交
3456 3457 3458 3459 3460 3461
</td>
</tr>
</tbody>
</table>
</dd></dl>

3462
</div>
Y
Yu Yang 已提交
3463 3464 3465 3466
</div>
</div>


3467
           </div>
Y
Yu Yang 已提交
3468
          </div>
3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482
          <footer>
  

  <hr/>

  <div role="contentinfo">
    <p>
        &copy; Copyright 2016, PaddlePaddle developers.

    </p>
  </div>
  Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>. 

</footer>
Y
Yu Yang 已提交
3483 3484 3485

        </div>
      </div>
3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522

    </section>

  </div>
  


  

    <script type="text/javascript">
        var DOCUMENTATION_OPTIONS = {
            URL_ROOT:'../../../',
            VERSION:'',
            COLLAPSE_INDEX:false,
            FILE_SUFFIX:'.html',
            HAS_SOURCE:  true,
            SOURCELINK_SUFFIX: ".txt",
        };
    </script>
      <script type="text/javascript" src="../../../_static/jquery.js"></script>
      <script type="text/javascript" src="../../../_static/underscore.js"></script>
      <script type="text/javascript" src="../../../_static/doctools.js"></script>
      <script type="text/javascript" src="../../../_static/translations.js"></script>
      <script type="text/javascript" src="https://cdn.bootcss.com/mathjax/2.7.0/MathJax.js"></script>
       
  

  
  
    <script type="text/javascript" src="../../../_static/js/theme.js"></script>
  
  
  <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" crossorigin="anonymous"></script>
  <script src="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/js/perfect-scrollbar.jquery.min.js"></script>
  <script src="../../../_static/js/paddle_doc_init.js"></script> 

</body>
Y
Yu Yang 已提交
3523
</html>