activation.py 6.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from .. import functional as F
from paddle.nn import Layer

__all__ = []


class ReLU(Layer):
    """
23

24
    Sparse ReLU Activation, requiring x to be a SparseCooTensor or SparseCsrTensor.
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

    .. math::

        ReLU(x) = max(x, 0)

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Sparse Tensor with any shape.
        - output: Sparse Tensor with the same shape as input.

    Examples:
        .. code-block:: python

            import paddle
42 43 44

            dense_x = paddle.to_tensor([-2., 0., 1.])
            sparse_x = dense_x.to_sparse_coo(1)
45
            relu = paddle.sparse.nn.ReLU()
46 47
            out = relu(sparse_x)
            # [0., 0., 1.]
48

49 50 51 52 53 54 55 56 57 58 59 60
    """

    def __init__(self, name=None):
        super(ReLU, self).__init__()
        self._name = name

    def forward(self, x):
        return F.relu(x, self._name)

    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str
61 62 63


class Softmax(Layer):
64 65
    r"""

66
    Sparse Softmax Activation, requiring x to be a SparseCooTensor or SparseCsrTensor.
67 68

    Note:
69
        Only support axis=-1 for SparseCsrTensor, which is faster when read data
70 71
        by row (axis=-1).

72
    From the point of view of dense matrix, for each row :math:`i` and each column :math:`j`
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
    in the matrix, we have:

    .. math::

        softmax_ij = \frac{\exp(x_ij - max_j(x_ij))}{\sum_j(exp(x_ij - max_j(x_ij))}

    Parameters:
        axis (int, optional): The axis along which to perform softmax calculations. Only support -1 for SparseCsrTensor.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: SparseCooTensor / SparseCsrTensor with any shape.
        - output: Sparse Tensor with the same shape as input.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            paddle.seed(100)

95 96 97 98 99 100 101
            mask = np.random.rand(3, 4) < 0.5
            np_x = np.random.rand(3, 4) * mask
            # [[0.         0.         0.96823406 0.19722934]
            #  [0.94373937 0.         0.02060066 0.71456372]
            #  [0.         0.         0.         0.98275049]]

            csr = paddle.to_tensor(np_x).to_sparse_csr()
102 103 104
            # Tensor(shape=[3, 4], dtype=paddle.float64, place=Place(gpu:0), stop_gradient=True,
            #        crows=[0, 2, 5, 6],
            #        cols=[2, 3, 0, 2, 3, 3],
105 106 107
            #        values=[0.96823406, 0.19722934, 0.94373937, 0.02060066, 0.71456372,
            #                0.98275049])

108
            softmax = paddle.sparse.nn.Softmax()
109
            out = softmax(csr)
110 111 112
            # Tensor(shape=[3, 4], dtype=paddle.float64, place=Place(gpu:0), stop_gradient=True,
            #        crows=[0, 2, 5, 6],
            #        cols=[2, 3, 0, 2, 3, 3],
113 114
            #        values=[0.68373820, 0.31626180, 0.45610887, 0.18119845, 0.36269269,
            #                1.        ])
115 116 117 118 119 120 121 122 123 124 125 126 127
    """

    def __init__(self, axis=-1, name=None):
        super(Softmax, self).__init__()
        self._axis = axis
        self._name = name

    def forward(self, x):
        return F.softmax(x, self._axis, self._name)

    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str
128 129 130 131


class ReLU6(Layer):
    """
132

133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
    Sparse ReLU6 Activation, requiring x to be a SparseCooTensor or SparseCsrTensor.

    .. math::

        ReLU(x) = min(max(0,x), 6)

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Sparse Tensor with any shape.
        - output: Sparse Tensor with the same shape as input.

    Examples:
        .. code-block:: python

            import paddle

            dense_x = paddle.to_tensor([-2., 0., 8.])
            sparse_x = dense_x.to_sparse_coo(1)
154
            relu6 = paddle.sparse.nn.ReLU6()
155
            out = relu6(sparse_x)
156

157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
    """

    def __init__(self, name=None):
        super(ReLU6, self).__init__()
        self._name = name

    def forward(self, x):
        return F.relu6(x, self._name)

    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str


class LeakyReLU(Layer):
172 173 174
    r"""

    Sparse Leaky ReLU Activation, requiring x to be a SparseCooTensor or SparseCsrTensor.
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202

    .. math::

        LeakyReLU(x)=
            \left\{
                \begin{array}{rcl}
                    x, & & if \ x >= 0 \\
                    negative\_slope * x, & & otherwise \\
                \end{array}
            \right.

    Parameters:
        negative_slope (float, optional): Slope of the activation function at
            :math:`x < 0` . Default is 0.01.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Sparse Tensor with any shape.
        - output: Sparse Tensor with the same shape as input.

    Examples:
        .. code-block:: python

            import paddle

            dense_x = paddle.to_tensor([-2., 0., 5.])
            sparse_x = dense_x.to_sparse_coo(1)
203
            leaky_relu = paddle.sparse.nn.LeakyReLU(0.5)
204
            out = leaky_relu(sparse_x)
205

206 207 208 209 210 211 212 213 214 215 216 217 218
    """

    def __init__(self, negative_slope=0.01, name=None):
        super(LeakyReLU, self).__init__()
        self._negative_slope = negative_slope
        self._name = name

    def forward(self, x):
        return F.leaky_relu(x, self._negative_slope, self._name)

    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str