utils.py 21.0 KB
Newer Older
1 2
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 2021 NVIDIA Corporation.  All rights reserved.
3
#
4 5 6
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
7
#
8
#     http://www.apache.org/licenses/LICENSE-2.0
9
#
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Utilities of Auto SParsity (ASP).
"""

from __future__ import print_function

import sys
import math
import collections
import numpy as np
from enum import Enum
from itertools import permutations
import threading

__all__ = [
30 31 32 33 34 35 36 37 38 39
    'calculate_density',
    'check_mask_1d',
    'get_mask_1d',
    'check_mask_2d',
    'get_mask_2d_greedy',
    'get_mask_2d_best',
    'create_mask',
    'check_sparsity',
    'MaskAlgo',
    'CheckMethod',
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
]


class MaskAlgo(Enum):
    r"""
    A collection of all mask generating algorithms.
    There currently are three algorithms, `MASK_1D`, `MASK_2D_GREEDY` and `MASK_2D_BEST`
    """
    MASK_1D = 'get_mask_1d'
    MASK_2D_GREEDY = 'get_mask_2d_greedy'
    MASK_2D_BEST = 'get_mask_2d_best'


class CheckMethod(Enum):
    r"""
    A collection of all sparsity checking approaches.
    There currently are two methods, `CHECK_1D` and `CHECK_2D`
    """
    CHECK_1D = 'check_mask_1d'
    CHECK_2D = 'check_mask_2d'

    @staticmethod
    def get_checking_method(mask_algo):
        r"""
        Get sparsity checking method by mask generating algorithm.

        Args:
            mask_algo (MaskAlgo): The algorithm of mask generating.
        Returns:
            CheckMethod: The corresponded sparsity checking method.
        Examples:
            .. code-block:: python

            import numpy as np
74 75
            from paddle.static.sparsity import MaskAlgo
            from paddle.fluid.contrib.sparsity import CheckMethod
76 77 78 79 80 81 82 83 84 85

            CheckMethod.get_checking_method(MaskAlgo.MASK_1D)
            # CheckMethod.CHECK_1D

            CheckMethod.get_checking_method(MaskAlgo.MASK_2D_GREEDY)
            # CheckMethod.CHECK_2D

            CheckMethod.get_checking_method(MaskAlgo.MASK_2D_BEST)
            # CheckMethod.CHECK_2D
        """
86 87 88
        assert isinstance(
            mask_algo, MaskAlgo
        ), "mask_algo should be MaskAlgo type"
89 90 91 92 93 94
        if mask_algo == MaskAlgo.MASK_1D:
            return CheckMethod.CHECK_1D
        else:
            return CheckMethod.CHECK_2D


95
def calculate_density(x):
96
    r"""
97

98 99 100 101
    Return the density of the input tensor.

    Args:
        x (nparray): The input tensor.
102

103
    Returns:
104 105
        float, The density of :attr:`x`.

106 107 108
    Examples:
        .. code-block:: python

109 110 111 112
            import paddle
            import numpy as np

            x = np.array([[0, 1, 3, 0],
113
                        [1, 1, 0, 1]])
114 115
            paddle.incubate.asp.calculate_density(x) # 0.625

116 117 118 119 120
    """
    x_flattened = x.flatten()
    return float(np.nonzero(x_flattened)[0].size) / x_flattened.size


121
def _reshape_1d(mat, m):
122
    r"""
123
    Reshape the input 2D matrix to shape (-1, m).
124
    If the second dimension of :attr:`mat` is not a multiples of :attr:`m`,
125 126 127 128 129 130 131
    then this function would pad the remainder with 0 before reshaping.

    .. math::

        remainder = mat.shape[1] % m

    Args:
132
        mat (nparray): The input 2D matrix.
133 134 135 136
        m (int): The second dimension of reshaped matrix.
    Returns:
        tuple: A pair of the reshaped and padded matrix and the shape of padded matrix (non-reshaping).
    """
137 138
    assert len(mat.shape) == 2, "The input mat should be a 2D matrix!"

139 140 141
    remainder = mat.shape[1] % m
    if mat.shape[1] % m > 0:
        mat_padded = np.zeros((mat.shape[0], mat.shape[1] + (m - remainder)))
142
        mat_padded[:, : mat.shape[1]] = mat
143 144 145 146 147 148 149 150 151
        shape = mat_padded.shape
        return mat_padded.reshape(-1, m), shape
    else:
        return mat.reshape(-1, m), mat.shape


def check_mask_1d(mat, n, m):
    r"""
    Check if every row of the input matrix :attr:`mat` is in 1D `n:m` sparse pattern.
152
    This function would pad the second dimension of :attr:`mat` by zero
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
    to be a multiples of :attr:`m` if necessary.

    1D `n:m` sparse pattern: At least :attr:`n` zeros in every :math:`1 \times m` block.

    Args:
        mat (nparray): The input matrix.
        n (int): n of `n:m` sparse pattern.
        m (int): m of `n:m` sparse pattern.
    Returns:
        bool: True if every row of :attr:`mat` is in 1D n:m sparse pattern, else False.
    Examples:
        .. code-block:: python

          import numpy as np
          import paddle.fluid.contrib.sparsity as sparsity

          x = np.array([[0, 1, 3, 0],
                        [1, 0, 0, 1]])
          sparsity.check_mask_1d(x, 2, 4) # True

          x = np.array([[0, 1, 5, 4],
                        [1, 0, 0, 1]])
          sparsity.check_mask_1d(x, 2, 4) # False

          # x would be padded to shape (2, 8)
          x = np.array([[0, 1, 0, 4, 6],
                        [1, 0, 0, 1, 7]])
          sparsity.check_mask_1d(x, 2, 4) # True
    """
    if len(mat.shape) <= 1:
183
        mat_flattern, shape = _reshape_1d(mat.reshape(1, mat.shape[0]), m)
184
    else:
185
        mat_flattern, shape = _reshape_1d(mat, m)
186 187 188 189 190 191 192 193 194

    for sub_mat in mat_flattern:
        if np.nonzero(sub_mat)[0].size > (m - n):
            return False
    return True


def get_mask_1d(mat, n, m):
    r"""
195 196
    Generate 1D `n:m` sparse pattern mask of the input matrix :attr:`mat`
    in row-directory. This function would pad the second dimension of :attr:`mat`
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
    by zero to be a multiples of :attr:`m` before mask generation.

    1D `n:m` sparse pattern: At least :attr:`n` zeros in every :math:`1 \times m` block.

    Args:
        mat (nparray): The input matrix.
        n (int): n of `n:m` sparse pattern.
        m (int): m of `n:m` sparse pattern.
    Returns:
        nparray: The 1D `n:m` sparse mask of :attr:`mat`.
    Examples:
        .. code-block:: python

          import numpy as np
          import paddle.fluid.contrib.sparsity as sparsity

          mat = np.array([[0, 1, 5, 4],
                          [2, 7, 3, 6]])
          mask = sparsity.get_mask_1d(mat, 2, 4)
          # nparray([[0, 0, 1, 1],
          #          [0, 1, 0, 1]])
          sparsity.check_mask_1d(mask, 2, 4) # True
    """
220
    mat_flattern, shape = _reshape_1d(mat, m)
221 222 223 224 225 226 227 228

    mask_flattern = np.ones_like(mat_flattern)
    mask = np.ones_like(mat)
    for i in range(mat_flattern.shape[0]):
        sub_mat = mat_flattern[i]
        min_order_indices = np.argsort(np.absolute(sub_mat))
        mask_flattern[i, min_order_indices[:n].tolist()] = 0
    mask_flattern = mask_flattern.reshape(shape)
229
    mask[:, :] = mask_flattern[:, : mat.shape[1]]
230 231 232
    return mask


233
def _reshape_2d(mat, m):
234
    r"""
235
    Reshape the input 2D matrix to shape (-1, :math:`m \times m`).
236 237 238 239 240 241 242 243 244
    In each dimension of :attr:`mat`, if it is not a multiples of :attr:`m`, 
    then this function would pad the remainder with 0 before reshaping.

    .. math::

        remainder_0 = mat.shape[0] % m \\
        remainder_1 = mat.shape[1] % m

    Args:
245
        mat (nparray): The input 2D matrix.
246 247 248 249
        m (int): The square root of second dimension of reshaped matrix.
    Returns:
        tuple: A pair of the reshaped and padded matrix and the shape of padded matrix (non-reshaping).
    """
250 251
    assert len(mat.shape) == 2, "The input mat should be a 2D matrix!"

252 253 254
    remainder_0 = mat.shape[0] % m
    remainder_1 = mat.shape[1] % m

255 256 257 258
    new_shape = (
        mat.shape[0] if remainder_0 == 0 else mat.shape[0] + (m - remainder_0),
        mat.shape[1] if remainder_1 == 0 else mat.shape[1] + (m - remainder_1),
    )
259
    mat_padded = np.zeros(new_shape)
260
    mat_padded[: mat.shape[0], : mat.shape[1]] = mat
261 262 263 264 265 266 267

    mat_flattern = np.empty(new_shape).reshape(-1, m * m)
    curr_idx = 0
    for row_start in range(0, mat_padded.shape[0], m):
        row_end = row_start + m
        for col_start in range(0, mat_padded.shape[1], m):
            col_end = col_start + m
268 269 270
            sub_mat = np.squeeze(
                mat_padded[row_start:row_end, col_start:col_end].reshape(-1)
            )
271 272 273 274 275 276 277 278
            mat_flattern[curr_idx] = sub_mat
            curr_idx += 1
    return mat_flattern, mat_padded.shape


def check_mask_2d(mat, n, m):
    r"""
    Check if every :math:`m \times m` block of the input matrix :attr:`mat` is in 2D `n:m` sparse pattern.
279
    This function would pad each dimension of :attr:`mat` by zero to be a multiples of
280 281
    :attr:`m` if necessary.

282
    2D `n:m` sparse pattern: At least :math:`n \times n` zeros in every :math:`m \times m` block
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
    under the constraint of at least :attr:`n` zeros for each row and column.

    Args:
        mat (nparray): The input matrix.
        n (int): n of `n:m` sparse pattern.
        m (int): m of `n:m` sparse pattern.
    Returns:
        bool: True if  every :math:`m \times m` block of the input matrix :attr:`mat` is in 2D `n:m` sparse pattern, else False.
    Examples:
        .. code-block:: python

          import numpy as np
          import paddle.fluid.contrib.sparsity as sparsity

          x = np.array([[0, 8, 9, 0],
                        [9, 0, 0, 10],
                        [5, 0, 0, 6],
                        [0, 4, 6, 0]])
          sparsity.check_mask_2d(x, 2, 4) # True

          x = np.array([[0, 8, 0, 9],
                        [9, 0, 0, 10],
                        [0, 5, 0, 6],
                        [0, 4, 6, 0]])
          sparsity.check_mask_2d(x, 2, 4) # False

          # x would be padded to shape (8, 8)
          x = np.array([[0, 8, 0, 9],
                        [9, 0, 7, 0],
                        [0, 5, 0, 6],
                        [3, 0, 6, 0],
                        [1, 1, 0, 1]])
          sparsity.check_mask_2d(x, 2, 4) # True
    """
317
    mat_padded, shape = _reshape_2d(mat, m)
318 319
    for sub_mat in mat_padded:
        sub_mask = np.absolute(np.squeeze(sub_mat.reshape(m, m))) > 0
320 321 322
        if (np.sum(np.sum(sub_mask, axis=1) > (m - n)) != 0) and (
            np.sum(np.sum(sub_mask, axis=0) > (m - n)) != 0
        ):
323 324 325 326 327 328
            return False
    return True


def get_mask_2d_greedy(mat, n, m):
    r"""
329
    Greedily generate 2D `n:m` sparse pattern mask of the input matrix :attr:`mat`.
330 331
    This function would pad each dimension of :attr:`mat` by zero to be a multiples of :attr:`m` before mask generation.

332
    2D `n:m` sparse pattern: At least :math:`n \times n` zeros in every :math:`m \times m` block
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
    under the constraint of at least :attr:`n` zeros for each row and column.
    Greedily generating: For each :math:`m \times m` block, selecting values to keep in descent order.

    Args:
        mat (nparray): The input matrix.
        n (int): n of `n:m` sparse pattern.
        m (int): m of `n:m` sparse pattern.
    Returns:
        nparray: The 2D `n:m` sparse mask of :attr:`mat`.
    Examples:
        .. code-block:: python

          import numpy as np
          import paddle.fluid.contrib.sparsity as sparsity

          mat = np.array([[9, 8, 3, 7],
                          [9, 2, 1, 10],
                          [5, 1, 3, 6],
                          [2, 4, 6, 1]])
          mask = sparsity.get_mask_2d_greedy(mat, 2, 4)
          # nparray([[1. 1. 0. 0.]
          #          [1. 0. 0. 1.]
          #          [0. 0. 1. 1.]
          #          [0. 1. 1. 0.]])
          sparsity.check_mask_2d(mask, 2, 4) # True
    """
359
    mat_padded, shape = _reshape_2d(mat, m)
360 361 362 363 364 365 366
    mask_padded = np.zeros_like(mat_padded).reshape(-1, m, m)

    for idx in range(len(mat_padded)):
        sub_mat = np.absolute(np.squeeze(mat_padded[idx]))
        sub_mask = np.squeeze(mask_padded[idx])

        min_order_1d_indices = np.argsort(sub_mat)
367 368 369
        min_order_2d_indices = [
            (int(x / m), x % m) for x in min_order_1d_indices
        ]
370 371 372 373 374
        row_counter = collections.Counter()
        col_counter = collections.Counter()

        for i in range(len(min_order_1d_indices) - 1, -1, -1):
            matrix_entry = min_order_2d_indices[i]
375 376 377
            if (row_counter[matrix_entry[0]] == n) or (
                col_counter[matrix_entry[1]] == n
            ):
378 379 380 381 382 383 384 385 386 387 388 389 390 391
                continue

            sub_mask[matrix_entry[0], matrix_entry[1]] = 1.0
            row_counter[matrix_entry[0]] += 1
            col_counter[matrix_entry[1]] += 1

    mask = np.empty(shape)
    curr_idx = 0
    for row_start in range(0, shape[0], m):
        row_end = row_start + m
        for col_start in range(0, shape[1], m):
            col_end = col_start + m
            mask[row_start:row_end, col_start:col_end] = mask_padded[curr_idx]
            curr_idx += 1
392
    return mask[: mat.shape[0], : mat.shape[1]]
393 394


395 396
_valid_2d_patterns_lock = threading.Lock()
_valid_2d_patterns = {}
397 398


399
def _compute_valid_2d_patterns(n, m):
400 401 402
    r"""
    Compute all vaild 2D `n:m` sparse patterns.

403
    2D `n:m` sparse pattern: At least :math:`n \times n` zeros in every :math:`m \times m` block
404 405 406 407 408 409 410 411
    under the constraint of at least :attr:`n` zeros for each row and column.

    Args:
        n (int): n of `n:m` sparse pattern.
        m (int): m of `n:m` sparse pattern.
    Returns:
        dictionary: A dictionary with key: *m_n* (string) and value: all vaild 2D `n:m` sparse patterns.
    """
412 413
    global _valid_2d_patterns_lock
    global _valid_2d_patterns
414 415

    valid_key = '{}_{}'.format(m, n)
416 417
    if valid_key in _valid_2d_patterns:
        return _valid_2d_patterns[valid_key]
418 419 420 421 422 423 424
    else:
        patterns = np.zeros(m)
        patterns[:n] = 1
        patterns = list(set(permutations(patterns.tolist())))
        patterns = patterns + patterns
        patterns = np.asarray(list(set(permutations(patterns, m))))

425 426 427 428 429
        valid = (
            ((patterns.sum(axis=1) <= n).sum(axis=1) == m)
            .nonzero()[0]
            .reshape(-1)
        )
430 431 432
        valid_patterns = np.empty((valid.shape[0], m, m))
        valid_patterns[:] = patterns[valid[:]]

433 434 435
        _valid_2d_patterns_lock.acquire()
        _valid_2d_patterns[valid_key] = valid_patterns
        _valid_2d_patterns_lock.release()
436 437 438 439 440 441

        return valid_patterns


def get_mask_2d_best(mat, n, m):
    r"""
442 443
    Generate 2D `n:m` sparse pattern mask of the input matrix :attr:`mat`
    to form sparse matrix with maximun L1 norm .This function would pad each
444 445
    dimension of :attr:`mat` by zero to be a multiples of :attr:`m` before mask generation.

446
    2D `n:m` sparse pattern: At least :math:`n \times n` zeros in every :math:`m \times m` block
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
    under the constraint of at least :attr:`n` zeros for each row and column.

    *Note*: L1 norm of sparse matrix from `Best` API is greater than or equal to the one from `Greedy`.

    Args:
        mat (nparray): The input matrix.
        n (int): n of `n:m` sparse pattern.
        m (int): m of `n:m` sparse pattern.
    Returns:
        nparray: The 1D `n:m` sparse mask of :attr:`mat`.
    Examples:
        .. code-block:: python

          import numpy as np
          import paddle.fluid.contrib.sparsity as sparsity

          mat = np.array([[2, 8, 9, 9],
                          [9, 1, 3, 9],
                          [5, 6, 3, 9],
                          [2, 4, 6, 9]])
          mask_greedy = sparsity.get_mask_2d_greedy(mat, 2, 4)
468
          mask_best = sparsity.get_mask_2d_best(mat, 2, 4)
469 470 471
          print("L1 norm of `greedy` sparse matrix", np.multiply(mat, mask_greedy).sum()) # 56
          print("L1 norm of `best` sparse matrix", np.multiply(mat, mask_best).sum()) # 61
    """
472
    patterns = _compute_valid_2d_patterns(n, m)
473

474
    mat_flattern, shape = _reshape_2d(mat, m)
475
    mask_flattern = np.ones_like(mat_flattern).reshape(-1, m, m)
476 477 478 479
    pmax = np.argmax(
        np.matmul(mat_flattern, patterns.reshape(patterns.shape[0], m * m).T),
        axis=1,
    )
480 481 482 483 484 485 486 487 488 489 490

    mask_flattern[:] = patterns[pmax[:]]
    mask = np.empty(shape)

    curr_idx = 0
    for row_start in range(0, shape[0], m):
        row_end = row_start + m
        for col_start in range(0, shape[1], m):
            col_end = col_start + m
            mask[row_start:row_end, col_start:col_end] = mask_flattern[curr_idx]
            curr_idx += 1
491
    return mask[: mat.shape[0], : mat.shape[1]]
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530


def create_mask(tensor, func_name=MaskAlgo.MASK_1D, n=2, m=4):
    r"""
    Create `n:m` sparse pattern mask of the input tensor via function given by :attr:`func_name`.
    Currently only support tensor with dimension less than or equal to 4.

    Args:
        tensor (nparray): The input tensor.
        func_name (MaskAlgo, optional): The function name to generate spase mask. Default is `MaskAlgo.MASK_1D`. All options please refer to `MaskAlgo`.
        n (int, optional): n of `n:m` sparse pattern. Default is 2.
        m (int, optional): m of `n:m` sparse pattern. Default is 4.
    Returns:
        nparray: The `n:m` sparse mask of :attr:`tensor` generated by :attr:`func_name`.
    Examples:
        .. code-block:: python

          import numpy as np
          import paddle.fluid.contrib.sparsity as sparsity

          tensor = np.array([[2, 8, 9, 9],
                             [9, 1, 3, 9],
                             [5, 6, 3, 9],
                             [2, 4, 6, 9]])
          mask_1d = sparsity.create_mask(tensor, func_name=sparsity.MaskAlgo.MASK_1D)
          # nparray([[0 0 1 1],
          #          [1 0 0 1],
          #          [0 1 0 1],
          #          [0 0 1 1]])
          mask_2d = sparsity.create_mask(tensor, func_name=sparsity.MaskAlgo.MASK_2D_BEST)
          # nparray([[0 1 1 0],
          #          [1 0 0 1],
          #          [1 1 0 0],
          #          [0 0 1 1]])
    """
    shape = tensor.shape
    dtype = tensor.dtype
    t = tensor.astype(float)

531 532 533 534
    assert isinstance(func_name, MaskAlgo), (
        "func_name argumet of create_mask is only accepted as type MaskAlgo. "
        "But got {}".format(type(func_name))
    )
535 536 537 538 539 540 541
    func = getattr(sys.modules[__name__], func_name.value, None)
    if len(shape) == 1:
        t = t.reshape(1, shape[0])
    elif len(shape) == 2:
        t = t.reshape(shape[0], shape[1])
    elif len(shape) == 3:
        t = t.reshape(shape[0] * shape[1], shape[2])
542
    # 4d-tensor conv (h, w, in, out) -> (h*w*out, in) in GemmConvKernel Op
543
    elif len(shape) == 4:
544 545 546
        t = t.transpose([0, 1, 3, 2]).reshape(
            shape[0] * shape[1] * shape[3], shape[2]
        )
547
        mask = func(t, n=n, m=m)
548 549 550 551 552
        return (
            mask.reshape([shape[0], shape[1], shape[3], shape[2]])
            .transpose([0, 1, 3, 2])
            .astype(dtype)
        )
553
    else:
554 555 556 557
        raise ValueError(
            "The dimension of input tensor is not supported in create_mask, "
            "Only dimension < 4 is supported but got {}".format(len(shape))
        )
558 559 560

    mask = func(t, n=n, m=m)
    return mask.reshape(shape).astype(dtype)
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595


def check_sparsity(tensor, func_name=CheckMethod.CHECK_1D, n=2, m=4):
    r"""
    Check if input tensor is in `n:m` sparse pattern via function given by :attr:`func_name`.
    Currently only support tensor with dimension less than or equal to 4.

    Args:
        tensor (nparray): The input tensor.
        func_name (CheckMethod, optional): The function name to generate spase mask. Default is `CheckMethod.CHECK_1D`. All options please refer to `CheckMethod`.
        n (int, optional): n of `n:m` sparse pattern. Default is 2.
        m (int, optional): m of `n:m` sparse pattern. Default is 4.
    Returns:
        bool: True if tensor pass checking of function given by :attr:`func_name`, else False.
    Examples:
        .. code-block:: python

          import numpy as np
          import paddle.fluid.contrib.sparsity as sparsity

          tensor = np.array([[2, 8, 9, 9],
                             [9, 1, 3, 9],
                             [5, 6, 3, 9],
                             [2, 4, 6, 9]])
          mask_1d = sparsity.create_mask(tensor, func_name=sparsity.MaskAlgo.MASK_1D)
          # nparray([[0 0 1 1],
          #          [1 0 0 1],
          #          [0 1 0 1],
          #          [0 0 1 1]])
          sparsity.check_sparsity(mask_1d, func_name=sparsity.CheckMethod.CHECK_1D) # True
          sparsity.check_sparsity(mask_1d, func_name=sparsity.CheckMethod.CHECK_2D) # False
    """
    shape = tensor.shape
    t = tensor.astype(float)

596 597 598 599
    assert type(func_name) == CheckMethod, (
        "func_name argumet of check_sparsity is only accepted as type CheckMethod. "
        "But got {}".format(type(func_name))
    )
600 601 602 603 604 605 606
    func = getattr(sys.modules[__name__], func_name.value, None)
    if len(shape) == 1:
        t = t.reshape(1, shape[0])
    elif len(shape) == 2:
        t = t.reshape(shape[0], shape[1])
    elif len(shape) == 3:
        t = t.reshape(shape[0] * shape[1], shape[2])
607
    # 4d-tensor conv (h, w, in, out) -> (h*w*out, in) in GemmConvKernel Op
608
    elif len(shape) == 4:
609 610 611
        t = t.transpose([0, 1, 3, 2]).reshape(
            [shape[0] * shape[1] * shape[3], shape[2]]
        )
612
    else:
613 614 615 616
        raise ValueError(
            "The dimension of input tensor is not supported in create_mask, "
            "Only dimension < 4 is supported but got {}".format(len(shape))
        )
617

618
    return func(t, n=n, m=m)