sequence_softmax_op.h 5.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

Y
Yi Wang 已提交
17
#include "paddle/fluid/framework/op_registry.h"
18 19 20 21 22 23 24

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
template <typename DeviceContext, typename T>
struct SequenceSoftmaxFunctor {
  void operator()(
      const DeviceContext &ctx, const LoDTensor &x,
      const framework::Vector<size_t> &ref_lod, /*expand referenced lod*/
      LoDTensor *out);
};

template <typename DeviceContext, typename T>
struct SequenceSoftmaxGradFunctor {
  void operator()(const DeviceContext &ctx, const LoDTensor &dout,
                  const LoDTensor &out,
                  const framework::Vector<size_t> &ref_lod, /*referenced lod*/
                  LoDTensor *dx);
};

template <typename T>
struct SequenceSoftmaxFunctor<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext &ctx, const LoDTensor &x,
                  const framework::Vector<size_t> &ref_lod, /*referenced lod*/
                  LoDTensor *out) {
    size_t hight = ref_lod.size() - 1;
    const T *in_data = x.data<T>();
    T *out_data = out->mutable_data<T>(ctx.GetPlace());
    for (size_t i = 0; i < hight; ++i) {
      size_t span = ref_lod[i + 1] - ref_lod[i];
      T result = 0;
      for (size_t j = 0; j < span; ++j) {
        result += exp(in_data[ref_lod[i] + j]);
      }
      for (size_t j = 0; j < span; ++j) {
        out_data[ref_lod[i] + j] = exp(in_data[ref_lod[i] + j]) / result;
      }
    }
  }
};

template <typename T>
struct SequenceSoftmaxGradFunctor<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext &ctx, const LoDTensor &dout,
                  const LoDTensor &out,
                  const framework::Vector<size_t> &ref_lod, /*referenced lod*/
                  LoDTensor *dx) {
    size_t hight = ref_lod.size() - 1;

    const T *softmax_grad_data = dout.data<T>();
    const T *softmax = out.data<T>();
    T *dx_data = dx->mutable_data<T>(ctx.GetPlace());

    for (size_t i = 0; i < hight; ++i) {
      size_t span = ref_lod[i + 1] - ref_lod[i];
      T result = 0;
      for (size_t j = 0; j < span; ++j) {
        result += softmax_grad_data[ref_lod[i] + j] * softmax[ref_lod[i] + j];
      }

      for (size_t j = 0; j < span; ++j) {
        dx_data[ref_lod[i] + j] = (softmax_grad_data[ref_lod[i] + j] - result) *
                                  softmax[ref_lod[i] + j];
      }
    }
  }
};

Q
QI JUN 已提交
89
template <typename DeviceContext, typename T>
90
class SequenceSoftmaxKernel : public framework::OpKernel<T> {
91
 public:
92 93 94
  void Compute(const framework::ExecutionContext &ctx) const override {
    auto *x = ctx.Input<LoDTensor>("X");
    auto *out = ctx.Output<LoDTensor>("Out");
95 96

    auto lod = x->lod();
97
    auto dims = x->dims();
98 99 100
    PADDLE_ENFORCE_EQ(lod.empty(), false,
                      "Input(X) Tensor of SequenceSoftmaxOp does not contain "
                      "LoD information.");
101

102
    const size_t level = lod.size() - 1;
103 104 105
    PADDLE_ENFORCE_GT(
        lod.size(), 0U,
        "The LoD level of Input X should be larger than 0 (lod.size() > 0).");
106 107 108 109
    PADDLE_ENFORCE_EQ(dims[0], static_cast<int64_t>(lod[level].back()),
                      "The first dimension of Input(X) should be equal to the "
                      "sum of all sequences' lengths.");
    PADDLE_ENFORCE_EQ(dims[0], x->numel(),
110 111
                      "The width of each timestep in Input(X) of "
                      "SequenceSoftmaxOp should be 1.");
112 113

    out->mutable_data<T>(ctx.GetPlace());
114 115 116 117

    SequenceSoftmaxFunctor<DeviceContext, T> seq_softmax_functor;
    seq_softmax_functor(ctx.template device_context<DeviceContext>(), *x,
                        lod[level], out);
118 119 120
  }
};

Q
QI JUN 已提交
121
template <typename DeviceContext, typename T>
122
class SequenceSoftmaxGradKernel : public framework::OpKernel<T> {
123
 public:
124 125 126 127 128 129 130
  void Compute(const framework::ExecutionContext &ctx) const override {
    auto *out = ctx.Input<LoDTensor>("Out");
    auto *out_grad = ctx.Input<LoDTensor>(framework::GradVarName("Out"));
    auto *x = ctx.Input<LoDTensor>("X");
    auto *x_grad = ctx.Output<LoDTensor>(framework::GradVarName("X"));
    if (!x_grad) {
      return;
131
    }
132

133
    x_grad->set_lod(x->lod());
134 135 136
    auto lod = x->lod();
    const size_t level = lod.size() - 1;
    x_grad->mutable_data<T>(ctx.GetPlace());
137 138 139 140

    SequenceSoftmaxGradFunctor<DeviceContext, T> seq_softmax_grad_functor;
    seq_softmax_grad_functor(ctx.template device_context<DeviceContext>(),
                             *out_grad, *out, lod[level], x_grad);
141
  }
142 143 144 145
};

}  // namespace operators
}  // namespace paddle