dot_grad_kernel_impl.h 31.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include "paddle/pten/core/dense_tensor.h"
C
Chen Weihang 已提交
18
#include "paddle/pten/kernels/funcs/eigen/common.h"
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75

#include "paddle/pten/kernels/complex_kernel.h"

#include "paddle/fluid/operators/eigen/eigen_function.h"
#include "paddle/fluid/operators/math/complex_functors.h"

namespace pten {

template <typename DeviceContext, typename T, typename Enabel = void>
struct DotGradFunction {
  void operator()(const DeviceContext& ctx,
                  const DenseTensor* tensor_x,
                  const DenseTensor* tensor_y,
                  const DenseTensor* tensor_dout,
                  DenseTensor* tensor_dx,
                  DenseTensor* tensor_dy);
};

template <typename DeviceContext, typename T>
struct DotGradFunction<DeviceContext,
                       T,
                       paddle::operators::math::EnableComplex<T>> {
  void operator()(const DeviceContext& ctx,
                  const DenseTensor* tensor_x,
                  const DenseTensor* tensor_y,
                  const DenseTensor* tensor_dout,
                  DenseTensor* tensor_dx,
                  DenseTensor* tensor_dy) {
#if defined(__NVCC__) || defined(__HIPCC__)
    if (1 == tensor_dout->dims().size()) {
      auto dout = EigenVector<T>::Flatten(*tensor_dout);

      if (tensor_dx) {
        auto y = EigenVector<T>::Flatten(*tensor_y);
        auto& dev = *ctx.eigen_device();
        Eigen::DSizes<int, 1> size(tensor_dx->numel());

        ConjKernel<T, DeviceContext>(ctx, *tensor_y, tensor_dx);

        auto dx = EigenVector<T>::Flatten(*tensor_dx);
        dx.device(dev) = dx * dout.broadcast(size);
      }

      if (tensor_dy) {
        auto x = EigenVector<T>::Flatten(*tensor_x);
        auto& dev = *ctx.eigen_device();
        Eigen::DSizes<int, 1> size(tensor_dy->numel());

        ConjKernel<T, DeviceContext>(ctx, *tensor_x, tensor_dy);

        auto dy = EigenVector<T>::Flatten(*tensor_dy);
        dy.device(dev) = dy * dout.broadcast(size);
      }
    } else {
      auto dout = EigenMatrix<T>::From(*tensor_dout);

      if (tensor_dx) {
76
        ctx.template Alloc<T>(tensor_dx);
77 78 79 80 81 82 83 84 85 86 87
        auto y = EigenMatrix<T>::From(*tensor_y);
        auto& dev = *ctx.eigen_device();
        Eigen::DSizes<int, 2> size(1, tensor_dx->dims()[1]);

        ConjKernel<T, DeviceContext>(ctx, *tensor_y, tensor_dx);

        auto dx = EigenMatrix<T>::From(*tensor_dx);
        dx.device(dev) = dx * dout.broadcast(size);
      }

      if (tensor_dy) {
88
        ctx.template Alloc<T>(tensor_dy);
89 90 91 92 93 94 95 96 97 98 99 100 101 102
        auto x = EigenMatrix<T>::From(*tensor_x);
        auto& dev = *ctx.eigen_device();
        Eigen::DSizes<int, 2> size(1, tensor_dy->dims()[1]);

        ConjKernel<T, DeviceContext>(ctx, *tensor_x, tensor_dy);

        auto dy = EigenMatrix<T>::From(*tensor_dy);
        dy.device(dev) = dy * dout.broadcast(size);
      }
    }
#else
    const auto* data_dout = tensor_dout->data<T>();

    if (tensor_dx) {
103
      auto* data_dx = ctx.template Alloc<T>(tensor_dx);
104 105
      const auto* data_y = tensor_y->data<T>();
      const DDim& dim = tensor_x->dims();
106
      size_t N = static_cast<size_t>(pten::framework::product(dim));
107 108 109 110 111 112 113 114 115 116 117

      auto step = dim[dim.size() - 1];

      int s = -1;
      for (size_t i = 0; i < N; ++i) {
        if (0 == i % step) ++s;
        data_dx[i] = T(data_y[i].real, -data_y[i].imag) * data_dout[s];
      }
    }

    if (tensor_dy) {
118
      auto* data_dy = ctx.template Alloc<T>(tensor_dy);
119 120
      const auto* data_x = tensor_x->data<T>();
      const DDim& dim = tensor_y->dims();
121
      size_t N = static_cast<size_t>(pten::framework::product(dim));
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166

      auto step = dim[dim.size() - 1];

      int s = -1;
      for (size_t i = 0; i < N; ++i) {
        if (0 == i % step) ++s;
        data_dy[i] = T(data_x[i].real, -data_x[i].imag) * data_dout[s];
      }
    }
#endif
  }
};

template <typename DeviceContext, typename T>
struct DotGradFunction<DeviceContext,
                       T,
                       paddle::operators::math::DisableComplex<T>> {
  void operator()(const DeviceContext& ctx,
                  const DenseTensor* tensor_x,
                  const DenseTensor* tensor_y,
                  const DenseTensor* tensor_dout,
                  DenseTensor* tensor_dx,
                  DenseTensor* tensor_dy) {
#if defined(__NVCC__) || defined(__HIPCC__)
    if (1 == tensor_dout->dims().size()) {
      auto dout = EigenVector<T>::Flatten(*tensor_dout);
      if (tensor_dx) {
        auto y = EigenVector<T>::Flatten(*tensor_y);
        auto dx = EigenVector<T>::Flatten(*tensor_dx);
        auto& dev = *ctx.eigen_device();
        Eigen::DSizes<int, 1> size(tensor_dx->numel());
        dx.device(dev) = y * dout.broadcast(size);
      }

      if (tensor_dy) {
        auto x = EigenVector<T>::Flatten(*tensor_x);
        auto dy = EigenVector<T>::Flatten(*tensor_dy);
        auto& dev = *ctx.eigen_device();
        Eigen::DSizes<int, 1> size(tensor_dy->numel());
        dy.device(dev) = x * dout.broadcast(size);
      }
    } else {
      auto dout = EigenMatrix<T>::From(*tensor_dout);

      if (tensor_dx) {
167
        ctx.template Alloc<T>(tensor_dx);
168 169 170 171 172 173 174 175
        auto y = EigenMatrix<T>::From(*tensor_y);
        auto dx = EigenMatrix<T>::From(*tensor_dx);
        auto& dev = *ctx.eigen_device();
        Eigen::DSizes<int, 2> size(1, tensor_dx->dims()[1]);
        dx.device(dev) = y * dout.broadcast(size);
      }

      if (tensor_dy) {
176
        ctx.template Alloc<T>(tensor_dy);
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
        auto x = EigenMatrix<T>::From(*tensor_x);
        auto dy = EigenMatrix<T>::From(*tensor_dy);
        auto& dev = *ctx.eigen_device();
        Eigen::DSizes<int, 2> size(1, tensor_dy->dims()[1]);
        dy.device(dev) = x * dout.broadcast(size);
      }
    }
#else
    auto const *x = tensor_x->data<T>(), *y = tensor_y->data<T>(),
               *dz = tensor_dout->data<T>();
    auto&& d = tensor_x->dims();
    auto const N = tensor_x->numel();
    auto const B = d[d.size() - 1];

    if (tensor_dx) {
192
      auto* dx = ctx.template Alloc<T>(tensor_dx);
193 194 195 196 197 198 199
      for (auto j = 0; j < N / B; ++j) {
        auto const ss = dz[j];
        for (auto i = 0; i < B; ++i) *dx++ = *y++ * ss;
      }
    }

    if (tensor_dy) {
200
      auto* dy = ctx.template Alloc<T>(tensor_dy);
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
      for (auto j = 0; j < N / B; ++j) {
        auto const ss = dz[j];
        for (auto i = 0; i < B; i++) *dy++ = *x++ * ss;
      }
    }
#endif
  }
};

template <typename DeviceContext, typename T, typename Enabel = void>
struct DotDoubleGradFunction {
  void operator()(const DeviceContext& ctx,
                  const DenseTensor* tensor_x,
                  const DenseTensor* tensor_y,
                  const DenseTensor* tensor_dout,
                  const DenseTensor* tensor_ddx,
                  const DenseTensor* tensor_ddy,
                  DenseTensor* tensor_dx,
                  DenseTensor* tensor_dy,
                  DenseTensor* tensor_ddout);
};

template <typename DeviceContext, typename T>
struct DotDoubleGradFunction<DeviceContext,
                             T,
                             paddle::operators::math::EnableComplex<T>> {
  void operator()(const DeviceContext& ctx,
                  const DenseTensor* tensor_x,
                  const DenseTensor* tensor_y,
                  const DenseTensor* tensor_dout,
                  const DenseTensor* tensor_ddx,
                  const DenseTensor* tensor_ddy,
                  DenseTensor* tensor_dx,
                  DenseTensor* tensor_dy,
                  DenseTensor* tensor_ddout) {
#if defined(__NVCC__) || defined(__HIPCC__)
    if (1 == tensor_dout->dims().size()) {
      DenseTensor tensor_dout_help;
      auto& dev = *ctx.eigen_device();
      if (tensor_dx || tensor_dy) {
        tensor_dout_help = Conj<T, DeviceContext>(ctx, *tensor_dout);
      }
      if (tensor_dx) {
        auto ddy = EigenVector<T>::Flatten(*tensor_ddy);
        Eigen::DSizes<int, 1> size(tensor_ddy->numel());
        auto dx = EigenVector<T>::Flatten(*tensor_dx);
        auto dout = EigenVector<T>::Flatten(tensor_dout_help);
        dx.device(dev) = ddy * dout.broadcast(size);
      }

      if (tensor_dy) {
        auto ddx = EigenVector<T>::Flatten(*tensor_ddx);
        Eigen::DSizes<int, 1> size(tensor_ddx->numel());
        auto dy = EigenVector<T>::Flatten(*tensor_dy);
        auto dout = EigenVector<T>::Flatten(tensor_dout_help);
        dy.device(dev) = ddx * dout.broadcast(size);
      }

      if (tensor_ddout) {
        DenseTensor tensor_x_help = Conj<T, DeviceContext>(ctx, *tensor_x);
        DenseTensor tensor_y_help = Conj<T, DeviceContext>(ctx, *tensor_y);

        auto x = EigenVector<T>::Flatten(tensor_x_help);
        auto y = EigenVector<T>::Flatten(tensor_y_help);
        auto ddx = EigenVector<T>::Flatten(*tensor_ddx);
        auto ddy = EigenVector<T>::Flatten(*tensor_ddy);
        auto ddout = EigenVector<T>::Flatten(*tensor_ddout);
        ddout.device(dev) = (x * ddy + y * ddx).sum();
      }
    }
#else
    const auto* data_dout = tensor_dout->data<T>();

    if (tensor_dx) {
275
      auto* data_dx = ctx.template Alloc<T>(tensor_dx);
276 277 278 279 280 281 282 283 284 285 286 287 288 289
      const auto* data_ddy = tensor_ddy->data<T>();
      const DDim& dim = tensor_dx->dims();
      size_t N = static_cast<size_t>(product(dim));

      auto step = dim[dim.size() - 1];

      int s = -1;
      for (size_t i = 0; i < N; ++i) {
        if (0 == i % step) ++s;
        data_dx[i] = T(data_dout[s].real, -data_dout[s].imag) * data_ddy[i];
      }
    }

    if (tensor_dy) {
290
      auto* data_dy = ctx.template Alloc<T>(tensor_dy);
291 292 293 294 295 296 297 298 299 300 301 302 303 304
      const auto* data_ddx = tensor_ddx->data<T>();
      const DDim& dim = tensor_dy->dims();
      size_t N = static_cast<size_t>(product(dim));

      auto step = dim[dim.size() - 1];

      int s = -1;
      for (size_t i = 0; i < N; ++i) {
        if (0 == i % step) ++s;
        data_dy[i] = T(data_dout[s].real, -data_dout[s].imag) * data_ddx[i];
      }
    }

    if (tensor_ddout) {
305
      auto* data_ddout = ctx.template Alloc<T>(tensor_ddout);
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
      auto* data_x = tensor_x->data<T>();
      auto* data_y = tensor_y->data<T>();
      auto* data_ddx = tensor_ddx->data<T>();
      auto* data_ddy = tensor_ddy->data<T>();

      const DDim& dim = tensor_dy->dims();
      size_t N = static_cast<size_t>(product(dim));
      auto step = dim[dim.size() - 1];
      int s = -1;
      bool new_s = false;

      for (size_t i = 0; i < N; ++i) {
        if (0 == i % step) {
          ++s;
          new_s = true;
        }
        if (new_s) {
          data_ddout[s] = T(data_x[i].real, -data_x[i].imag) * data_ddy[i] +
                          T(data_y[i].real, -data_y[i].imag) * data_ddx[i];
        } else {
          data_ddout[s] += T(data_x[i].real, -data_x[i].imag) * data_ddy[i] +
                           T(data_y[i].real, -data_y[i].imag) * data_ddx[i];
        }
        new_s = false;
      }
    }
#endif
  }
};

template <typename DeviceContext, typename T>
struct DotDoubleGradFunction<DeviceContext,
                             T,
                             paddle::operators::math::DisableComplex<T>> {
  void operator()(const DeviceContext& ctx,
                  const DenseTensor* tensor_x,
                  const DenseTensor* tensor_y,
                  const DenseTensor* tensor_dout,
                  const DenseTensor* tensor_ddx,
                  const DenseTensor* tensor_ddy,
                  DenseTensor* tensor_dx,
                  DenseTensor* tensor_dy,
                  DenseTensor* tensor_ddout) {
#if defined(__NVCC__) || defined(__HIPCC__)
    if (1 == tensor_dout->dims().size()) {
      auto& dev = *ctx.eigen_device();
      auto dout = EigenVector<T>::Flatten(*tensor_dout);
      if (tensor_dx) {
354
        ctx.template Alloc<T>(tensor_dx);
355 356 357 358 359 360 361
        auto ddy = EigenVector<T>::Flatten(*tensor_ddy);
        Eigen::DSizes<int, 1> size(tensor_ddy->numel());
        auto dx = EigenVector<T>::Flatten(*tensor_dx);
        dx.device(dev) = ddy * dout.broadcast(size);
      }

      if (tensor_dy) {
362
        ctx.template Alloc<T>(tensor_dy);
363 364 365 366 367 368 369 370
        auto ddx = EigenVector<T>::Flatten(*tensor_ddx);
        Eigen::DSizes<int, 1> size(tensor_ddx->numel());

        auto dy = EigenVector<T>::Flatten(*tensor_dy);
        dy.device(dev) = ddx * dout.broadcast(size);
      }

      if (tensor_ddout) {
371
        ctx.template Alloc<T>(tensor_ddout);
372 373 374 375 376 377 378 379 380 381 382 383
        auto x = EigenVector<T>::Flatten(*tensor_x);
        auto y = EigenVector<T>::Flatten(*tensor_y);
        auto ddx = EigenVector<T>::Flatten(*tensor_ddx);
        auto ddy = EigenVector<T>::Flatten(*tensor_ddy);
        auto ddout = EigenVector<T>::Flatten(*tensor_ddout);
        ddout.device(dev) = (x * ddy + y * ddx).sum();
      }
    }
#else
    const auto* data_dout = tensor_dout->data<T>();

    if (tensor_dx) {
384
      auto* data_dx = ctx.template Alloc<T>(tensor_dx);
385 386 387 388 389 390 391 392 393 394 395 396 397 398
      const auto* data_ddy = tensor_ddy->data<T>();
      const DDim& dim = tensor_dx->dims();
      size_t N = static_cast<size_t>(product(dim));

      auto step = dim[dim.size() - 1];

      int s = -1;
      for (size_t i = 0; i < N; ++i) {
        if (0 == i % step) ++s;
        data_dx[i] = data_dout[s] * data_ddy[i];
      }
    }

    if (tensor_dy) {
399
      auto* data_dy = ctx.template Alloc<T>(tensor_dy);
400 401 402 403 404 405 406 407 408 409 410 411 412 413
      const auto* data_ddx = tensor_ddx->data<T>();
      const DDim& dim = tensor_dy->dims();
      size_t N = static_cast<size_t>(product(dim));

      auto step = dim[dim.size() - 1];

      int s = -1;
      for (size_t i = 0; i < N; ++i) {
        if (0 == i % step) ++s;
        data_dy[i] = data_dout[s] * data_ddx[i];
      }
    }

    if (tensor_ddout) {
414
      auto* data_ddout = ctx.template Alloc<T>(tensor_ddout);
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
      auto* data_x = tensor_x->data<T>();
      auto* data_y = tensor_y->data<T>();
      auto* data_ddx = tensor_ddx->data<T>();
      auto* data_ddy = tensor_ddy->data<T>();

      const DDim& dim = tensor_dy->dims();
      size_t N = static_cast<size_t>(product(dim));
      auto step = dim[dim.size() - 1];
      int s = -1;
      bool new_s = false;

      for (size_t i = 0; i < N; ++i) {
        if (0 == i % step) {
          ++s;
          new_s = true;
        }
        if (new_s) {
          data_ddout[s] = data_x[i] * data_ddy[i] + data_y[i] * data_ddx[i];
        } else {
          data_ddout[s] += data_x[i] * data_ddy[i] + data_y[i] * data_ddx[i];
        }
        new_s = false;
      }
    }
#endif
  }
};

template <typename DeviceContext, typename T, typename Enabel = void>
struct DotTripleGradFunction {
  void operator()(const DeviceContext& ctx,
                  const DenseTensor* in_tensor_x,
                  const DenseTensor* in_tensor_y,
                  const DenseTensor* in_tensor_ddx,
                  const DenseTensor* in_tensor_ddy,
                  const DenseTensor* in_tensor_d_dx,
                  const DenseTensor* in_tensor_d_dy,
                  const DenseTensor* in_tensor_dout,
                  const DenseTensor* in_tensor_d_ddout,
                  DenseTensor* out_tensor_d_x,
                  DenseTensor* out_tensor_d_y,
                  DenseTensor* out_tensor_d_dout,
                  DenseTensor* out_tensor_d_ddx,
                  DenseTensor* out_tensor_d_ddy);
};

// TODO(wuweilong): enable this function when the unittests framewark for multi
// grad is ok (dtype: complex64 or complex128).
template <typename DeviceContext, typename T>
struct DotTripleGradFunction<DeviceContext,
                             T,
                             paddle::operators::math::EnableComplex<T>> {
  void operator()(const DeviceContext& ctx,
                  const DenseTensor* in_tensor_x,
                  const DenseTensor* in_tensor_y,
                  const DenseTensor* in_tensor_ddx,
                  const DenseTensor* in_tensor_ddy,
                  const DenseTensor* in_tensor_d_dx,
                  const DenseTensor* in_tensor_d_dy,
                  const DenseTensor* in_tensor_dout,
                  const DenseTensor* in_tensor_d_ddout,
                  DenseTensor* out_tensor_d_x,
                  DenseTensor* out_tensor_d_y,
                  DenseTensor* out_tensor_d_dout,
                  DenseTensor* out_tensor_d_ddx,
                  DenseTensor* out_tensor_d_ddy) {
#if defined(__NVCC__) || defined(__HIPCC__)
    if (1 == in_tensor_d_ddout->dims().size()) {
      DenseTensor in_tensor_d_ddout_help;
      auto& dev = *ctx.eigen_device();
      if (out_tensor_d_x || out_tensor_d_y) {
        in_tensor_d_ddout_help =
            Conj<T, DeviceContext>(ctx, *in_tensor_d_ddout);
      }
      if (out_tensor_d_x) {
        auto ddy = EigenVector<T>::Flatten(*in_tensor_ddy);
        Eigen::DSizes<int, 1> size(in_tensor_ddy->numel());
        auto d_x = EigenVector<T>::Flatten(*out_tensor_d_x);
        auto d_ddout = EigenVector<T>::Flatten(in_tensor_d_ddout_help);
        d_x.device(dev) = ddy * d_ddout.broadcast(size);
      }

      if (out_tensor_d_y) {
        auto ddx = EigenVector<T>::Flatten(*in_tensor_ddx);
        Eigen::DSizes<int, 1> size(in_tensor_ddx->numel());
        auto d_y = EigenVector<T>::Flatten(*out_tensor_d_y);
        auto d_ddout = EigenVector<T>::Flatten(in_tensor_d_ddout_help);
        d_y.device(dev) = ddx * d_ddout.broadcast(size);
      }

      if (out_tensor_d_dout) {
        DenseTensor in_tensor_ddx_help =
            Conj<T, DeviceContext>(ctx, *in_tensor_ddx);
        DenseTensor in_tensor_ddy_help =
            Conj<T, DeviceContext>(ctx, *in_tensor_ddy);

        auto ddx = EigenVector<T>::Flatten(in_tensor_ddx_help);
        auto ddy = EigenVector<T>::Flatten(in_tensor_ddy_help);
        auto d_dx = EigenVector<T>::Flatten(*in_tensor_d_dx);
        auto d_dy = EigenVector<T>::Flatten(*in_tensor_d_dy);
        auto d_dout = EigenVector<T>::Flatten(*out_tensor_d_dout);
        d_dout.device(dev) = (ddx * d_dy + ddy * d_dx).sum();
      }

      if (out_tensor_d_ddx) {
        DenseTensor in_tensor_dout_help =
            Conj<T, DeviceContext>(ctx, *in_tensor_dout);
        DenseTensor in_tensor_y_help =
            Conj<T, DeviceContext>(ctx, *in_tensor_y);

        auto dout = EigenVector<T>::Flatten(in_tensor_dout_help);
        auto y = EigenVector<T>::Flatten(in_tensor_y_help);
        auto d_ddout = EigenVector<T>::Flatten(*in_tensor_d_ddout);
        auto d_dy = EigenVector<T>::Flatten(*in_tensor_d_dy);
        auto d_ddx = EigenVector<T>::Flatten(*out_tensor_d_ddx);
        Eigen::DSizes<int, 1> size(in_tensor_y->numel());
        d_ddx.device(dev) =
            (dout.broadcast(size) * d_dy + y * d_ddout.broadcast(size));
      }

      if (out_tensor_d_ddy) {
        DenseTensor in_tensor_dout_help =
            Conj<T, DeviceContext>(ctx, *in_tensor_dout);
        DenseTensor in_tensor_x_help =
            Conj<T, DeviceContext>(ctx, *in_tensor_x);

        auto dout = EigenVector<T>::Flatten(in_tensor_dout_help);
        auto x = EigenVector<T>::Flatten(in_tensor_x_help);
        auto d_ddout = EigenVector<T>::Flatten(*in_tensor_d_ddout);
        auto d_dx = EigenVector<T>::Flatten(*in_tensor_d_dx);
        auto d_ddy = EigenVector<T>::Flatten(*out_tensor_d_ddy);
        Eigen::DSizes<int, 1> size(in_tensor_x->numel());
        d_ddy.device(dev) =
            (dout.broadcast(size) * d_dx + x * d_ddout.broadcast(size));
      }
    }
#else
    const auto* data_d_ddout = in_tensor_d_ddout->data<T>();

    if (out_tensor_d_x) {
555
      auto* data_d_x = ctx.template Alloc<T>(out_tensor_d_x);
556 557 558 559 560 561 562 563 564 565 566 567 568 569
      const auto* data_ddy = in_tensor_ddy->data<T>();

      const DDim& dim = out_tensor_d_x->dims();
      size_t N = static_cast<size_t>(product(dim));
      auto step = dim[dim.size() - 1];
      int s = -1;

      for (size_t i = 0; i < N; ++i) {
        if (0 == i % step) ++s;
        data_d_x[i] = T(data_ddy[i].real, -data_ddy[i].imag) * data_d_ddout[s];
      }
    }

    if (out_tensor_d_y) {
570
      auto* data_d_y = ctx.template Alloc<T>(out_tensor_d_y);
571 572 573 574 575 576 577 578 579 580 581 582 583 584
      const auto* data_ddx = in_tensor_ddx->data<T>();

      const DDim& dim = out_tensor_d_y->dims();
      size_t N = static_cast<size_t>(product(dim));
      auto step = dim[dim.size() - 1];
      int s = -1;

      for (size_t i = 0; i < N; ++i) {
        if (0 == i % step) ++s;
        data_d_y[i] = T(data_ddx[i].real, -data_ddx[i].imag) * data_d_ddout[s];
      }
    }

    if (out_tensor_d_dout) {
585
      auto* data_d_dout = ctx.template Alloc<T>(out_tensor_d_dout);
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
      auto* data_ddx = in_tensor_ddx->data<T>();
      auto* data_ddy = in_tensor_ddy->data<T>();
      auto* data_d_dx = in_tensor_d_dx->data<T>();
      auto* data_d_dy = in_tensor_d_dy->data<T>();

      const DDim& dim = out_tensor_d_dout->dims();
      size_t N = static_cast<size_t>(product(dim));
      auto step = dim[dim.size() - 1];
      int s = -1;
      bool new_s = false;

      for (size_t i = 0; i < N; ++i) {
        if (0 == i % step) {
          ++s;
          new_s = true;
        }
        if (new_s) {
          data_d_dout[s] =
              T(data_ddy[i].real, -data_ddy[i].imag) * data_d_dx[i] +
              T(data_ddx[i].real, -data_ddx[i].imag) * data_d_dy[i];
        } else {
          data_d_dout[s] +=
              T(data_ddy[i].real, -data_ddy[i].imag) * data_d_dx[i] +
              T(data_ddx[i].real, -data_ddx[i].imag) * data_d_dy[i];
        }
        new_s = false;
      }
    }

    if (out_tensor_d_ddx) {
616
      auto* data_d_ddx = ctx.template Alloc<T>(out_tensor_d_ddx);
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
      auto* data_dout = in_tensor_dout->data<T>();
      auto* data_d_dy = in_tensor_d_dy->data<T>();
      auto* data_y = in_tensor_y->data<T>();
      auto* data_d_ddout = in_tensor_d_ddout->data<T>();

      const DDim& dim = out_tensor_d_ddx->dims();
      size_t N = static_cast<size_t>(product(dim));
      auto step = dim[dim.size() - 1];
      int s = -1;

      for (size_t i = 0; i < N; ++i) {
        if (0 == i % step) ++s;
        data_d_ddx[i] =
            T(data_dout[s].real, -data_dout[s].imag) * data_d_dy[i] +
            T(data_y[i].real, -data_y[i].imag) * data_d_ddout[s];
      }
    }

    if (out_tensor_d_ddy) {
636
      auto* data_d_ddy = ctx.template Alloc<T>(out_tensor_d_ddy);
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
      auto* data_dout = in_tensor_dout->data<T>();
      auto* data_d_dx = in_tensor_d_dx->data<T>();
      auto* data_x = in_tensor_x->data<T>();
      auto* data_d_ddout = in_tensor_d_ddout->data<T>();

      const DDim& dim = out_tensor_d_ddy->dims();
      size_t N = static_cast<size_t>(product(dim));
      auto step = dim[dim.size() - 1];
      int s = -1;

      for (size_t i = 0; i < N; ++i) {
        if (0 == i % step) ++s;
        data_d_ddy[i] =
            T(data_dout[s].real, -data_dout[s].imag) * data_d_dx[i] +
            T(data_x[i].real, -data_x[i].imag) * data_d_ddout[s];
      }
    }
#endif
  }
};

template <typename DeviceContext, typename T>
struct DotTripleGradFunction<DeviceContext,
                             T,
                             paddle::operators::math::DisableComplex<T>> {
  void operator()(const DeviceContext& ctx,
                  const DenseTensor* in_tensor_x,
                  const DenseTensor* in_tensor_y,
                  const DenseTensor* in_tensor_ddx,
                  const DenseTensor* in_tensor_ddy,
                  const DenseTensor* in_tensor_d_dx,
                  const DenseTensor* in_tensor_d_dy,
                  const DenseTensor* in_tensor_dout,
                  const DenseTensor* in_tensor_d_ddout,
                  DenseTensor* out_tensor_d_x,
                  DenseTensor* out_tensor_d_y,
                  DenseTensor* out_tensor_d_dout,
                  DenseTensor* out_tensor_d_ddx,
                  DenseTensor* out_tensor_d_ddy) {
#if defined(__NVCC__) || defined(__HIPCC__)
    if (1 == in_tensor_d_ddout->dims().size()) {
      auto& dev = *ctx.eigen_device();
      auto d_ddout = EigenVector<T>::Flatten(*in_tensor_d_ddout);
      if (out_tensor_d_x) {
681
        ctx.template Alloc<T>(out_tensor_d_x);
682 683 684 685 686 687 688
        auto ddy = EigenVector<T>::Flatten(*in_tensor_ddy);
        Eigen::DSizes<int, 1> size(in_tensor_ddy->numel());
        auto d_x = EigenVector<T>::Flatten(*out_tensor_d_x);
        d_x.device(dev) = ddy * d_ddout.broadcast(size);
      }

      if (out_tensor_d_y) {
689
        ctx.template Alloc<T>(out_tensor_d_y);
690 691 692 693 694 695 696 697
        auto ddx = EigenVector<T>::Flatten(*in_tensor_ddx);
        Eigen::DSizes<int, 1> size(in_tensor_ddx->numel());

        auto d_y = EigenVector<T>::Flatten(*out_tensor_d_y);
        d_y.device(dev) = ddx * d_ddout.broadcast(size);
      }

      if (out_tensor_d_dout) {
698
        ctx.template Alloc<T>(out_tensor_d_dout);
699 700 701 702 703 704 705 706 707
        auto ddx = EigenVector<T>::Flatten(*in_tensor_ddx);
        auto ddy = EigenVector<T>::Flatten(*in_tensor_ddy);
        auto d_dx = EigenVector<T>::Flatten(*in_tensor_d_dx);
        auto d_dy = EigenVector<T>::Flatten(*in_tensor_d_dy);
        auto d_dout = EigenVector<T>::Flatten(*out_tensor_d_dout);
        d_dout.device(dev) = (ddx * d_dy + ddy * d_dx).sum();
      }

      if (out_tensor_d_ddx) {
708
        ctx.template Alloc<T>(out_tensor_d_ddx);
709 710 711 712 713 714 715 716 717 718 719
        auto dout = EigenVector<T>::Flatten(*in_tensor_dout);
        auto y = EigenVector<T>::Flatten(*in_tensor_y);
        auto d_ddout = EigenVector<T>::Flatten(*in_tensor_d_ddout);
        auto d_dy = EigenVector<T>::Flatten(*in_tensor_d_dy);
        auto d_ddx = EigenVector<T>::Flatten(*out_tensor_d_ddx);
        Eigen::DSizes<int, 1> size(in_tensor_y->numel());
        d_ddx.device(dev) =
            (dout.broadcast(size) * d_dy + y * d_ddout.broadcast(size));
      }

      if (out_tensor_d_ddy) {
720
        ctx.template Alloc<T>(out_tensor_d_ddy);
721 722 723 724 725 726 727 728 729 730 731 732 733 734
        auto dout = EigenVector<T>::Flatten(*in_tensor_dout);
        auto x = EigenVector<T>::Flatten(*in_tensor_x);
        auto d_ddout = EigenVector<T>::Flatten(*in_tensor_d_ddout);
        auto d_dx = EigenVector<T>::Flatten(*in_tensor_d_dx);
        auto d_ddy = EigenVector<T>::Flatten(*out_tensor_d_ddy);
        Eigen::DSizes<int, 1> size(in_tensor_x->numel());
        d_ddy.device(dev) =
            (dout.broadcast(size) * d_dx + x * d_ddout.broadcast(size));
      }
    }
#else
    const auto* data_d_ddout = in_tensor_d_ddout->data<T>();

    if (out_tensor_d_x) {
735
      auto* data_d_x = ctx.template Alloc<T>(out_tensor_d_x);
736 737 738 739 740 741 742 743 744 745 746 747 748 749
      const auto* data_ddy = in_tensor_ddy->data<T>();

      const DDim& dim = out_tensor_d_x->dims();
      size_t N = static_cast<size_t>(product(dim));
      auto step = dim[dim.size() - 1];
      int s = -1;

      for (size_t i = 0; i < N; ++i) {
        if (0 == i % step) ++s;
        data_d_x[i] = data_ddy[i] * data_d_ddout[s];
      }
    }

    if (out_tensor_d_y) {
750
      auto* data_d_y = ctx.template Alloc<T>(out_tensor_d_y);
751 752 753 754 755 756 757 758 759 760 761 762 763 764
      const auto* data_ddx = in_tensor_ddx->data<T>();

      const DDim& dim = out_tensor_d_y->dims();
      size_t N = static_cast<size_t>(product(dim));
      auto step = dim[dim.size() - 1];
      int s = -1;

      for (size_t i = 0; i < N; ++i) {
        if (0 == i % step) ++s;
        data_d_y[i] = data_ddx[i] * data_d_ddout[s];
      }
    }

    if (out_tensor_d_dout) {
765
      auto* data_d_dout = ctx.template Alloc<T>(out_tensor_d_dout);
766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
      auto* data_ddx = in_tensor_ddx->data<T>();
      auto* data_ddy = in_tensor_ddy->data<T>();
      auto* data_d_dx = in_tensor_d_dx->data<T>();
      auto* data_d_dy = in_tensor_d_dy->data<T>();

      const DDim& dim = in_tensor_ddx->dims();
      size_t N = static_cast<size_t>(product(dim));
      auto step = dim[dim.size() - 1];
      int s = -1;
      bool new_s = false;
      for (size_t i = 0; i < N; ++i) {
        if (0 == i % step) {
          ++s;
          new_s = true;
        }
        if (new_s) {
          data_d_dout[s] =
              data_ddy[i] * data_d_dx[i] + data_ddx[i] * data_d_dy[i];
        } else {
          data_d_dout[s] +=
              data_ddy[i] * data_d_dx[i] + data_ddx[i] * data_d_dy[i];
        }
        new_s = false;
      }
    }

    if (out_tensor_d_ddx) {
793
      auto* data_d_ddx = ctx.template Alloc<T>(out_tensor_d_ddx);
794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811
      auto* data_dout = in_tensor_dout->data<T>();
      auto* data_d_dy = in_tensor_d_dy->data<T>();
      auto* data_y = in_tensor_y->data<T>();
      auto* data_d_ddout = in_tensor_d_ddout->data<T>();

      const DDim& dim = out_tensor_d_ddx->dims();
      size_t N = static_cast<size_t>(product(dim));
      auto step = dim[dim.size() - 1];
      int s = -1;

      for (size_t i = 0; i < N; ++i) {
        if (0 == i % step) ++s;
        data_d_ddx[i] =
            data_dout[s] * data_d_dy[i] + data_y[i] * data_d_ddout[s];
      }
    }

    if (out_tensor_d_ddy) {
812
      auto* data_d_ddy = ctx.template Alloc<T>(out_tensor_d_ddy);
813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
      auto* data_dout = in_tensor_dout->data<T>();
      auto* data_d_dx = in_tensor_d_dx->data<T>();
      auto* data_x = in_tensor_x->data<T>();
      auto* data_d_ddout = in_tensor_d_ddout->data<T>();

      const DDim& dim = out_tensor_d_ddy->dims();
      size_t N = static_cast<size_t>(product(dim));
      auto step = dim[dim.size() - 1];
      int s = -1;

      for (size_t i = 0; i < N; ++i) {
        if (0 == i % step) ++s;
        data_d_ddy[i] =
            data_dout[s] * data_d_dx[i] + data_x[i] * data_d_ddout[s];
      }
    }
#endif
  }
};

template <typename T, typename Context>
void DotGradKernel(const Context& dev_ctx,
                   const DenseTensor& x,
                   const DenseTensor& y,
                   const DenseTensor& dout,
                   DenseTensor* dx,
                   DenseTensor* dy) {
  if (dx) {
841
    dev_ctx.template Alloc<T>(dx);
842 843
  }
  if (dy) {
844
    dev_ctx.template Alloc<T>(dy);
845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
  }
  DotGradFunction<Context, T>()(dev_ctx, &x, &y, &dout, dx, dy);
}

template <typename T, typename Context>
void DotDoubleGradKernel(const Context& dev_ctx,
                         const DenseTensor& x,
                         const DenseTensor& y,
                         const DenseTensor& ddx,
                         const DenseTensor& ddy,
                         const DenseTensor& dout,
                         DenseTensor* dx,
                         DenseTensor* dy,
                         DenseTensor* ddout) {
  if (dx) {
860
    dev_ctx.template Alloc<T>(dx);
861 862
  }
  if (dy) {
863
    dev_ctx.template Alloc<T>(dy);
864 865
  }
  if (ddout) {
866
    dev_ctx.template Alloc<T>(ddout);
867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
  }
  DotDoubleGradFunction<Context, T>()(
      dev_ctx, &x, &y, &dout, ddx, ddy, dx, dy, ddout);
}

template <typename T, typename Context>
void DotTripleGradKernel(const Context& dev_ctx,
                         const DenseTensor& x,
                         const DenseTensor& y,
                         const DenseTensor& ddx,
                         const DenseTensor& ddy,
                         const DenseTensor& d_dx,
                         const DenseTensor& d_dy,
                         const DenseTensor& dout,
                         const DenseTensor& d_ddout,
                         DenseTensor* d_x,
                         DenseTensor* d_y,
                         DenseTensor* d_ddx,
                         DenseTensor* d_ddy,
                         DenseTensor* d_dout) {
  if (d_x) {
888
    dev_ctx.template Alloc<T>(d_x);
889 890
  }
  if (d_y) {
891
    dev_ctx.template Alloc<T>(d_y);
892 893
  }
  if (d_ddx) {
894
    dev_ctx.template Alloc<T>(d_ddx);
895 896
  }
  if (d_ddy) {
897
    dev_ctx.template Alloc<T>(d_ddy);
898 899
  }
  if (d_dout) {
900
    dev_ctx.template Alloc<T>(d_dout);
901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
  }

  DotTripleGradFunction<Context, T>()(dev_ctx,
                                      &x,
                                      &y,
                                      ddx,
                                      ddy,
                                      d_dx,
                                      d_dy,
                                      dout,
                                      d_ddout,
                                      d_x,
                                      d_y,
                                      d_dout,
                                      d_ddx,
                                      d_ddy);
}

}  // namespace pten