softmax.cu 4.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
caoying03 已提交
2

3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
C
caoying03 已提交
6

7
    http://www.apache.org/licenses/LICENSE-2.0
C
caoying03 已提交
8

9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
C
caoying03 已提交
14 15 16

#define EIGEN_USE_GPU

17
#include "paddle/fluid/operators/math/math_function.h"
Y
Yi Wang 已提交
18 19
#include "paddle/fluid/operators/math/softmax.h"
#include "paddle/fluid/operators/math/softmax_impl.h"
20
#include "paddle/fluid/platform/cudnn_helper.h"
C
caoying03 已提交
21 22 23 24 25

namespace paddle {
namespace operators {
namespace math {

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
using Tensor = framework::Tensor;
using ScopedTensorDescriptor = platform::ScopedTensorDescriptor;
using DataLayout = platform::DataLayout;
template <typename T>
using CudnnDataType = platform::CudnnDataType<T>;

template <typename T>
void SoftmaxCUDNNFunctor<T>::operator()(
    const platform::CUDADeviceContext& context, const framework::Tensor* X,
    framework::Tensor* Y) {
  // ------------------- cudnn descriptors ---------------------
  ScopedTensorDescriptor xDesc;
  ScopedTensorDescriptor yDesc;
  std::vector<int> cudnn_tensor_dims = framework::vectorize2int(X->dims());
  DataLayout layout = DataLayout::kNCHW;
  if (cudnn_tensor_dims.size() == 5) {
    layout = DataLayout::kNCDHW;
  }
  // NOTE(*) : cudnn softmax only support >= 4D Tensor,
  // fill 1 at unused dims
  if (cudnn_tensor_dims.size() <= 2) {
    cudnn_tensor_dims.resize(4, 1);
  }
  cudnnTensorDescriptor_t cudnn_x_desc =
      xDesc.descriptor<T>(layout, cudnn_tensor_dims);
  cudnnTensorDescriptor_t cudnn_y_desc =
      xDesc.descriptor<T>(layout, cudnn_tensor_dims);
  PADDLE_ENFORCE(platform::dynload::cudnnSoftmaxForward(
      context.cudnn_handle(), CUDNN_SOFTMAX_ACCURATE,
      CUDNN_SOFTMAX_MODE_INSTANCE, CudnnDataType<T>::kOne(), cudnn_x_desc,
      X->data<T>(), CudnnDataType<T>::kZero(), cudnn_y_desc,
      Y->mutable_data<T>(context.GetPlace())));
}

template <typename T>
void SoftmaxGradCUDNNFunctor<T>::operator()(
    const platform::CUDADeviceContext& context, const framework::Tensor* Y,
    const framework::Tensor* YGrad, framework::Tensor* XGrad) {
  // ------------------- cudnn descriptors ---------------------
  ScopedTensorDescriptor yDesc;
  ScopedTensorDescriptor dyDesc;
  ScopedTensorDescriptor dxDesc;
  std::vector<int> cudnn_tensor_dims = framework::vectorize2int(Y->dims());
  DataLayout layout = DataLayout::kNCHW;
  if (cudnn_tensor_dims.size() == 5) {
    layout = DataLayout::kNCDHW;
  }
  // NOTE(*) : cudnn softmax only support >= 4D Tensor,
  // fill 1 at unused dims
  if (cudnn_tensor_dims.size() <= 2) {
    cudnn_tensor_dims.resize(4, 1);
  }
  cudnnTensorDescriptor_t cudnn_y_desc =
      yDesc.descriptor<T>(layout, cudnn_tensor_dims);
  cudnnTensorDescriptor_t cudnn_xgrad_desc =
      dxDesc.descriptor<T>(layout, cudnn_tensor_dims);
  cudnnTensorDescriptor_t cudnn_ygrad_desc =
      dyDesc.descriptor<T>(layout, cudnn_tensor_dims);
  PADDLE_ENFORCE(platform::dynload::cudnnSoftmaxBackward(
      context.cudnn_handle(), CUDNN_SOFTMAX_ACCURATE,
      CUDNN_SOFTMAX_MODE_INSTANCE, CudnnDataType<T>::kOne(), cudnn_y_desc,
      Y->data<T>(), cudnn_ygrad_desc, YGrad->data<T>(),
      CudnnDataType<T>::kZero(), cudnn_xgrad_desc,
      XGrad->mutable_data<T>(context.GetPlace())));
}

template class SoftmaxCUDNNFunctor<float>;
template class SoftmaxCUDNNFunctor<double>;
template class SoftmaxGradCUDNNFunctor<float>;
template class SoftmaxGradCUDNNFunctor<double>;

Q
QI JUN 已提交
97 98 99 100
template class SoftmaxFunctor<platform::CUDADeviceContext, float>;
template class SoftmaxFunctor<platform::CUDADeviceContext, double>;
template class SoftmaxGradFunctor<platform::CUDADeviceContext, float>;
template class SoftmaxGradFunctor<platform::CUDADeviceContext, double>;
C
caoying03 已提交
101 102 103 104

}  // namespace math
}  // namespace operators
}  // namespace paddle