common.py 5.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License

DISTRIBUTED_OPERATORS = {}


class DistributedOperator:
    def __init__(self):
        self._impls = []
        self._name = None

    def register_impl(self, dist_impl):
        self._impls.append(dist_impl)

    def get_impl(self, impl_idx):
        return self._impls[impl_idx]

    def get_impls(self):
        return self._impls


class DistributedOperatorImpl:
    def __init__(self):
        self._name = None
36 37
        self._forward_implemented = False
        self._backward_implemented = False
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116

    def forward(self, dist_ctx, *args, **kwargs):
        raise NotImplementedError("Please Implement this method in Subclass.")

    def backward(self, dist_ctx, *grad_outputs):
        raise NotImplementedError("Please Implement this method in Subclass.")

    def get_name(self):
        return self._name

    def is_process_mesh_compatible(self, op_dist_attr):
        raise NotImplementedError("Please Implement this method in Subclass.")

    def is_input_compatible(self, op_dist_attr):
        raise NotImplementedError("Please Implement this method in Subclass.")

    def is_output_compatible(self, op_dist_attr):
        raise NotImplementedError("Please Implement this method in Subclass.")

    def is_compatible(self, op_dist_attr):
        return self.is_process_mesh_compatible(op_dist_attr) \
            and self.is_input_compatible(op_dist_attr) \
            and self.is_output_compatible(op_dist_attr)

    def update_dims_mapping(self, op_dist_attr):
        raise NotImplementedError("Please Implement this method in Subclass.")


def register_distributed_operator(name, dist_op):
    global DISTRIBUTED_OPERATORS
    DISTRIBUTED_OPERATORS[name] = dist_op


def get_distributed_operator(name):
    global DISTRIBUTED_OPERATORS
    return DISTRIBUTED_OPERATORS.get(name, None)


def register_distributed_operator_impl(name, dist_impl):
    dist_op = get_distributed_operator(name)
    if dist_op is not None:
        dist_op.register_impl(dist_impl)
    else:
        assert False, "Must register distributed operator first."


def get_distributed_operator_impl(name, impl_idx):
    global DISTRIBUTED_OPERATORS
    return DISTRIBUTED_OPERATORS[name].get_impl(impl_idx)


def find_best_compatible_distributed_operator_impl(name, op_dist_attr,
                                                   fwd=True):
    """
    Here just return the first compatible implemention. 
    This will be improved by cost model in the future.
    """
    dist_op = get_distributed_operator(name)
    if dist_op is None:
        return None, -1
    compatible_impls = []
    impls = dist_op.get_impls()
    if fwd:
        for idx, impl in enumerate(impls):
            if impl.is_process_mesh_compatible(op_dist_attr) \
                and impl.is_input_compatible(op_dist_attr):
                compatible_impls.append((impl, idx))
    else:
        for idx, impl in enumerate(impls):
            if impl.is_process_mesh_compatible(op_dist_attr) \
                and impl.is_output_compatible(op_dist_attr):
                compatible_impls.append((impl, idx))

    if compatible_impls:
        best_compatible_impl, idx = compatible_impls[0]
    else:
        best_compatible_impl, idx = None, -1

    return best_compatible_impl, idx
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163


def copy_distributed_attr_for_var(src_op_dist_attr, var, src_var):
    """
    copy src var's dist_attr to dst var
    """
    import copy

    auto_paralle_context = src_op_dist_attr.get_owner_context()
    dist_attr = copy.deepcopy(
        auto_paralle_context.get_tensor_distributed_attr_for_program(src_var))
    dist_attr._owner_tensor = var
    dist_attr._owner_context = auto_paralle_context.get_tensor_distributed_attr_for_program(
        src_var)._owner_context
    auto_paralle_context.set_tensor_distributed_attr_for_program(var, dist_attr)


def copy_distributed_attr_for_dist_op(dist_op, dst_block, src_op_dist_attr):
    """
    copy src op's dist_attr to dst dist op
    """
    from ..attribute import OperatorDistributedAttribute

    auto_paralle_context = src_op_dist_attr.get_owner_context()
    op_dist_attr = OperatorDistributedAttribute(dist_op, auto_paralle_context)
    auto_paralle_context._copy_distributed_attr_from_op_desc(dist_op.desc,
                                                             op_dist_attr)
    auto_paralle_context.set_op_distributed_attr_for_program(dist_op,
                                                             op_dist_attr)

    op_dist_attr.set_process_mesh(src_op_dist_attr.get_process_mesh())
    op_dist_attr.set_impl_idx(src_op_dist_attr.get_impl_idx())

    for input_varname in dist_op.desc.input_arg_names():
        input_var = dst_block.var(input_varname)
        tensor_dist_attr = auto_paralle_context.get_tensor_distributed_attr_for_program(
            input_var)
        tensor_dims_mapping = tensor_dist_attr.get_dims_mapping()
        op_dist_attr.set_input_dims_mapping(input_varname, tensor_dims_mapping)

    for output_varname in dist_op.desc.output_arg_names():
        output_var = dst_block.var(output_varname)
        tensor_dist_attr = auto_paralle_context.get_tensor_distributed_attr_for_program(
            output_var)
        tensor_dims_mapping = tensor_dist_attr.get_dims_mapping()
        op_dist_attr.set_output_dims_mapping(output_varname,
                                             tensor_dims_mapping)