distance.py 4.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
from ...fluid.data_feeder import check_variable_and_dtype, check_type
from ...fluid.layer_helper import LayerHelper
18
from paddle import _C_ops, _legacy_C_ops
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
from paddle.fluid.framework import in_dygraph_mode, _in_legacy_dygraph

__all__ = []


def pairwise_distance(x, y, p=2., epsilon=1e-6, keepdim=False, name=None):
    r"""
    It computes the pairwise distance between two vectors. The
    distance is calculated by p-oreder norm:

    .. math::

        \Vert x \Vert _p = \left( \sum_{i=1}^n \vert x_i \vert ^ p \right) ^ {1/p}.

    Parameters:
        x (Tensor): Tensor, shape is :math:`[N, D]` or :math:`[D]`, where :math:`N`
            is batch size, :math:`D` is the dimension of vector. Available dtype is
            float32, float64.
        y (Tensor): Tensor, shape is :math:`[N, D]` or :math:`[D]`, where :math:`N`
            is batch size, :math:`D` is the dimension of vector. Available dtype is
            float32, float64.
        p (float, optional): The order of norm. Default: :math:`2.0`.
        epsilon (float, optional): Add small value to avoid division by zero.
            Default: :math:`1e-6`.
        keepdim (bool, optional): Whether to reserve the reduced dimension
            in the output Tensor. The result tensor is one dimension less than
            the result of ``|x-y|`` unless :attr:`keepdim` is True. Default: False.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`.
            Generally, no setting is required. Default: None.

    Returns:
        Tensor, the dtype is same as input tensor.
        - If :attr:`keepdim` is True, the output shape is :math:`[N, 1]` or :math:`[1]`,
            depending on whether the input has data shaped as :math:`[N, D]`.
        - If :attr:`keepdim` is False, the output shape is :math:`[N]` or :math:`[]`,
            depending on whether the input has data shaped as :math:`[N, D]`.

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([[1., 3.], [3., 5.]], dtype=paddle.float64)
            y = paddle.to_tensor([[5., 6.], [7., 8.]], dtype=paddle.float64)
            distance = paddle.nn.functional.pairwise_distance(x, y)
            print(distance.numpy()) # [5. 5.]

    """
    check_type(p, 'porder', (float, int), 'PairwiseDistance')
    check_type(epsilon, 'epsilon', (float), 'PairwiseDistance')
    check_type(keepdim, 'keepdim', (bool), 'PairwiseDistance')
    if in_dygraph_mode():
70
        sub = _C_ops.subtract(x, y)
71 72 73 74
        # p_norm op has not uesd epsilon, so change it to the following.
        if epsilon != 0.0:
            epsilon = paddle.fluid.dygraph.base.to_variable([epsilon],
                                                            dtype=sub.dtype)
75 76
            sub = _C_ops.add(sub, epsilon)
        return _C_ops.p_norm(sub, p, -1, 0., keepdim, False)
77 78

    if _in_legacy_dygraph():
79
        sub = _legacy_C_ops.elementwise_sub(x, y)
80 81 82
        if epsilon != 0.0:
            epsilon = paddle.fluid.dygraph.base.to_variable([epsilon],
                                                            dtype=sub.dtype)
83 84 85
            sub = _legacy_C_ops.elementwise_add(sub, epsilon)
        return _legacy_C_ops.p_norm(sub, 'axis', -1, 'porder', p, 'keepdim',
                                    keepdim, 'epsilon', 0.)
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'PairwiseDistance')
    check_variable_and_dtype(y, 'y', ['float32', 'float64'], 'PairwiseDistance')
    sub = paddle.subtract(x, y)
    if epsilon != 0.0:
        epsilon_var = sub.block.create_var(dtype=sub.dtype)
        epsilon_var = paddle.full(shape=[1],
                                  fill_value=epsilon,
                                  dtype=sub.dtype)
        sub = paddle.add(sub, epsilon_var)
    helper = LayerHelper("PairwiseDistance", name=name)
    attrs = {
        'axis': -1,
        'porder': p,
        'keepdim': keepdim,
        'epsilon': 0.,
    }
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(type='p_norm',
                     inputs={'X': sub},
                     outputs={'Out': out},
                     attrs=attrs)

    return out