math.py 10.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

J
Jiabin Yang 已提交
15
from paddle.fluid.layer_helper import LayerHelper, _non_static_mode
16
from paddle.fluid.data_feeder import check_variable_and_dtype
17
from paddle import _C_ops, _legacy_C_ops
H
hong 已提交
18
from paddle.fluid.framework import _in_legacy_dygraph, in_dygraph_mode
19

Z
Zhong Hui 已提交
20 21
__all__ = []

22 23

def segment_sum(data, segment_ids, name=None):
Z
Zhong Hui 已提交
24
    r"""
25 26 27 28 29 30 31 32
    Segment Sum Operator.

    This operator sums the elements of input `data` which with
    the same index in `segment_ids`.
    It computes a tensor such that $out_i = \\sum_{j} data_{j}$
    where sum is over j such that `segment_ids[j] == i`.

    Args:
33
        data (Tensor): A tensor, available data type float32, float64, int32, int64.
34 35 36
        segment_ids (Tensor): A 1-D tensor, which have the same size
                            with the first dimension of input data. 
                            Available data type is int32, int64.
Z
Zhong Hui 已提交
37 38 39
        name (str, optional): Name for the operation (optional, default is None). 
                            For more information, please refer to :ref:`api_guide_Name`.

40 41 42 43 44 45 46 47 48 49 50 51 52 53
    Returns:
       output (Tensor): the reduced result.

    Examples:

        .. code-block:: python

            import paddle
            data = paddle.to_tensor([[1, 2, 3], [3, 2, 1], [4, 5, 6]], dtype='float32')
            segment_ids = paddle.to_tensor([0, 0, 1], dtype='int32')
            out = paddle.incubate.segment_sum(data, segment_ids)
            #Outputs: [[4., 4., 4.], [4., 5., 6.]]

    """
H
hong 已提交
54
    if in_dygraph_mode():
55
        return _C_ops.segment_pool(data, segment_ids, "SUM")[0]
H
hong 已提交
56
    if _in_legacy_dygraph():
57 58
        out, tmp = _legacy_C_ops.segment_pool(data, segment_ids, 'pooltype',
                                              "SUM")
59 60
        return out

61 62 63
    check_variable_and_dtype(data, "X",
                             ("float32", "float64", "int32", "int64"),
                             "segment_pool")
64 65 66 67 68 69
    check_variable_and_dtype(segment_ids, "SegmentIds", ("int32", "int64"),
                             "segment_pool")

    helper = LayerHelper("segment_sum", **locals())
    out = helper.create_variable_for_type_inference(dtype=data.dtype)
    summed_ids = helper.create_variable_for_type_inference(dtype=data.dtype)
70 71 72 73 74 75 76 77 78 79
    helper.append_op(type="segment_pool",
                     inputs={
                         "X": data,
                         "SegmentIds": segment_ids
                     },
                     outputs={
                         "Out": out,
                         "SummedIds": summed_ids
                     },
                     attrs={"pooltype": "SUM"})
80 81 82 83
    return out


def segment_mean(data, segment_ids, name=None):
Z
Zhong Hui 已提交
84
    r"""
85 86 87 88 89 90 91 92 93
    Segment mean Operator.

    Ihis operator calculate the mean value of input `data` which
    with the same index in `segment_ids`.
    It computes a tensor such that $out_i = \\frac{1}{n_i}  \\sum_{j} data[j]$
    where sum is over j such that 'segment_ids[j] == i' and $n_i$ is the number
    of all index 'segment_ids[j] == i'.

    Args:
94
        data (tensor): a tensor, available data type float32, float64, int32, int64.
95 96 97
        segment_ids (tensor): a 1-d tensor, which have the same size 
                            with the first dimension of input data. 
                            available data type is int32, int64.
Z
Zhong Hui 已提交
98 99
        name (str, optional): Name for the operation (optional, default is None). 
                            For more information, please refer to :ref:`api_guide_Name`.
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114

    Returns:
       output (Tensor): the reduced result.

    Examples:

        .. code-block:: python

            import paddle
            data = paddle.to_tensor([[1, 2, 3], [3, 2, 1], [4, 5, 6]], dtype='float32')
            segment_ids = paddle.to_tensor([0, 0, 1], dtype='int32')
            out = paddle.incubate.segment_mean(data, segment_ids)
            #Outputs: [[2., 2., 2.], [4., 5., 6.]]

    """
H
hong 已提交
115 116

    if in_dygraph_mode():
117
        return _C_ops.segment_pool(data, segment_ids, "MEAN")[0]
J
Jiabin Yang 已提交
118
    if _non_static_mode():
119 120
        out, tmp = _legacy_C_ops.segment_pool(data, segment_ids, 'pooltype',
                                              "MEAN")
121 122
        return out

123 124 125
    check_variable_and_dtype(data, "X",
                             ("float32", "float64", "int32", "int64"),
                             "segment_pool")
126 127 128 129 130 131
    check_variable_and_dtype(segment_ids, "SegmentIds", ("int32", "int64"),
                             "segment_pool")

    helper = LayerHelper("segment_mean", **locals())
    out = helper.create_variable_for_type_inference(dtype=data.dtype)
    summed_ids = helper.create_variable_for_type_inference(dtype=data.dtype)
132 133 134 135 136 137 138 139 140 141
    helper.append_op(type="segment_pool",
                     inputs={
                         "X": data,
                         "SegmentIds": segment_ids
                     },
                     outputs={
                         "Out": out,
                         "SummedIds": summed_ids
                     },
                     attrs={"pooltype": "MEAN"})
142 143 144 145
    return out


def segment_min(data, segment_ids, name=None):
Z
Zhong Hui 已提交
146
    r"""
147 148 149 150 151 152 153 154
    Segment min operator.

    This operator calculate the minimum elements of input `data` which with
    the same index in `segment_ids`.
    It computes a tensor such that $out_i = \\min_{j} data_{j}$
    where min is over j such that `segment_ids[j] == i`.

    Args:
155
        data (tensor): a tensor, available data type float32, float64, int32, int64.
156 157 158
        segment_ids (tensor): a 1-d tensor, which have the same size
                            with the first dimension of input data. 
                            available data type is int32, int64.
Z
Zhong Hui 已提交
159 160 161
        name (str, optional): Name for the operation (optional, default is None). 
                            For more information, please refer to :ref:`api_guide_Name`.

162 163 164 165 166 167 168 169 170 171 172 173 174 175
    Returns:
       output (Tensor): the reduced result.

    Examples:

        .. code-block:: python

            import paddle
            data = paddle.to_tensor([[1, 2, 3], [3, 2, 1], [4, 5, 6]], dtype='float32')
            segment_ids = paddle.to_tensor([0, 0, 1], dtype='int32')
            out = paddle.incubate.segment_min(data, segment_ids)
            #Outputs:  [[1., 2., 1.], [4., 5., 6.]]

    """
H
hong 已提交
176 177

    if in_dygraph_mode():
178
        return _C_ops.segment_pool(data, segment_ids, "MIN")[0]
H
hong 已提交
179

J
Jiabin Yang 已提交
180
    if _non_static_mode():
181 182
        out, tmp = _legacy_C_ops.segment_pool(data, segment_ids, 'pooltype',
                                              "MIN")
183 184
        return out

185 186 187
    check_variable_and_dtype(data, "X",
                             ("float32", "float64", "int32", "int64"),
                             "segment_pool")
188 189 190 191 192 193
    check_variable_and_dtype(segment_ids, "SegmentIds", ("int32", "int64"),
                             "segment_pool")

    helper = LayerHelper("segment_min", **locals())
    out = helper.create_variable_for_type_inference(dtype=data.dtype)
    summed_ids = helper.create_variable_for_type_inference(dtype=data.dtype)
194 195 196 197 198 199 200 201 202 203
    helper.append_op(type="segment_pool",
                     inputs={
                         "X": data,
                         "SegmentIds": segment_ids
                     },
                     outputs={
                         "Out": out,
                         "SummedIds": summed_ids
                     },
                     attrs={"pooltype": "MIN"})
204 205 206 207
    return out


def segment_max(data, segment_ids, name=None):
Z
Zhong Hui 已提交
208
    r"""
209 210 211 212
    Segment max operator.

    This operator calculate the maximum elements of input `data` which with
    the same index in `segment_ids`.
Z
Zhong Hui 已提交
213
    It computes a tensor such that $out_i = \\max_{j} data_{j}$
214 215 216
    where max is over j such that `segment_ids[j] == i`.

    Args:
217
        data (tensor): a tensor, available data type float32, float64, int32, int64.
218 219 220
        segment_ids (tensor): a 1-d tensor, which have the same size
                            with the first dimension of input data. 
                            available data type is int32, int64.
Z
Zhong Hui 已提交
221 222
        name (str, optional): Name for the operation (optional, default is None). 
                            For more information, please refer to :ref:`api_guide_Name`.
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237

    Returns:
       output (Tensor): the reduced result.

    Examples:

        .. code-block:: python

            import paddle
            data = paddle.to_tensor([[1, 2, 3], [3, 2, 1], [4, 5, 6]], dtype='float32')
            segment_ids = paddle.to_tensor([0, 0, 1], dtype='int32')
            out = paddle.incubate.segment_max(data, segment_ids)
            #Outputs: [[3., 2., 3.], [4., 5., 6.]]

    """
H
hong 已提交
238 239

    if in_dygraph_mode():
240
        out, tmp = _C_ops.segment_pool(data, segment_ids, "MAX")
H
hong 已提交
241 242
        return out

J
Jiabin Yang 已提交
243
    if _non_static_mode():
244 245
        out, tmp = _legacy_C_ops.segment_pool(data, segment_ids, 'pooltype',
                                              "MAX")
246 247
        return out

248 249 250
    check_variable_and_dtype(data, "X",
                             ("float32", "float64", "int32", "int64"),
                             "segment_pool")
251 252 253 254 255 256
    check_variable_and_dtype(segment_ids, "SegmentIds", ("int32", "int64"),
                             "segment_pool")

    helper = LayerHelper("segment_max", **locals())
    out = helper.create_variable_for_type_inference(dtype=data.dtype)
    summed_ids = helper.create_variable_for_type_inference(dtype=data.dtype)
257 258 259 260 261 262 263 264 265 266
    helper.append_op(type="segment_pool",
                     inputs={
                         "X": data,
                         "SegmentIds": segment_ids
                     },
                     outputs={
                         "Out": out,
                         "SummedIds": summed_ids
                     },
                     attrs={"pooltype": "MAX"})
267
    return out