wmt14.py 5.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
WMT14 dataset.
The original WMT14 dataset is too large and a small set of data for set is
provided. This module will download dataset from
L
luotao1 已提交
18
http://paddlemodels.bj.bcebos.com/wmt/wmt14.tgz and
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
parse training set and test set into paddle reader creators.

"""
import tarfile
import gzip

import paddle.v2.dataset.common
from paddle.v2.parameters import Parameters

__all__ = [
    'train',
    'test',
    'get_dict',
    'convert',
]

URL_DEV_TEST = ('http://www-lium.univ-lemans.fr/~schwenk/'
                'cslm_joint_paper/data/dev+test.tgz')
MD5_DEV_TEST = '7d7897317ddd8ba0ae5c5fa7248d3ff5'
# this is a small set of data for test. The original data is too large and
# will be add later.
L
luotao1 已提交
40
URL_TRAIN = ('http://paddlemodels.bj.bcebos.com/wmt/wmt14.tgz')
41 42
MD5_TRAIN = '0791583d57d5beb693b9414c5b36798c'
# BLEU of this trained model is 26.92
T
typhoonzero 已提交
43
URL_MODEL = 'http://paddlemodels.bj.bcebos.com/wmt%2Fwmt14.tgz'
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
MD5_MODEL = '0cb4a5366189b6acba876491c8724fa3'

START = "<s>"
END = "<e>"
UNK = "<unk>"
UNK_IDX = 2


def __read_to_dict(tar_file, dict_size):
    def __to_dict(fd, size):
        out_dict = dict()
        for line_count, line in enumerate(fd):
            if line_count < size:
                out_dict[line.strip()] = line_count
            else:
                break
        return out_dict

    with tarfile.open(tar_file, mode='r') as f:
        names = [
            each_item.name for each_item in f
            if each_item.name.endswith("src.dict")
        ]
        assert len(names) == 1
        src_dict = __to_dict(f.extractfile(names[0]), dict_size)
        names = [
            each_item.name for each_item in f
            if each_item.name.endswith("trg.dict")
        ]
        assert len(names) == 1
        trg_dict = __to_dict(f.extractfile(names[0]), dict_size)
        return src_dict, trg_dict


def reader_creator(tar_file, file_name, dict_size):
    def reader():
        src_dict, trg_dict = __read_to_dict(tar_file, dict_size)
        with tarfile.open(tar_file, mode='r') as f:
            names = [
                each_item.name for each_item in f
                if each_item.name.endswith(file_name)
            ]
            for name in names:
                for line in f.extractfile(name):
                    line_split = line.strip().split('\t')
                    if len(line_split) != 2:
                        continue
                    src_seq = line_split[0]  # one source sequence
                    src_words = src_seq.split()
                    src_ids = [
                        src_dict.get(w, UNK_IDX)
                        for w in [START] + src_words + [END]
                    ]

                    trg_seq = line_split[1]  # one target sequence
                    trg_words = trg_seq.split()
                    trg_ids = [trg_dict.get(w, UNK_IDX) for w in trg_words]

                    # remove sequence whose length > 80 in training mode
                    if len(src_ids) > 80 or len(trg_ids) > 80:
                        continue
                    trg_ids_next = trg_ids + [trg_dict[END]]
                    trg_ids = [trg_dict[START]] + trg_ids

                    yield src_ids, trg_ids, trg_ids_next

    return reader


def train(dict_size):
    """
    WMT14 training set creator.

    It returns a reader creator, each sample in the reader is source language
    word ID sequence, target language word ID sequence and next word ID
    sequence.

    :return: Training reader creator
    :rtype: callable
    """
    return reader_creator(
        paddle.v2.dataset.common.download(URL_TRAIN, 'wmt14', MD5_TRAIN),
        'train/train', dict_size)


def test(dict_size):
    """
    WMT14 test set creator.

    It returns a reader creator, each sample in the reader is source language
    word ID sequence, target language word ID sequence and next word ID
    sequence.

    :return: Test reader creator
    :rtype: callable
    """
    return reader_creator(
        paddle.v2.dataset.common.download(URL_TRAIN, 'wmt14', MD5_TRAIN),
        'test/test', dict_size)


def gen(dict_size):
    return reader_creator(
        paddle.v2.dataset.common.download(URL_TRAIN, 'wmt14', MD5_TRAIN),
        'gen/gen', dict_size)


def model():
    tar_file = paddle.v2.dataset.common.download(URL_MODEL, 'wmt14', MD5_MODEL)
    with gzip.open(tar_file, 'r') as f:
        parameters = Parameters.from_tar(f)
    return parameters


def get_dict(dict_size, reverse=True):
    # if reverse = False, return dict = {'a':'001', 'b':'002', ...}
    # else reverse = true, return dict = {'001':'a', '002':'b', ...}
    tar_file = paddle.v2.dataset.common.download(URL_TRAIN, 'wmt14', MD5_TRAIN)
    src_dict, trg_dict = __read_to_dict(tar_file, dict_size)
    if reverse:
        src_dict = {v: k for k, v in src_dict.items()}
        trg_dict = {v: k for k, v in trg_dict.items()}
    return src_dict, trg_dict


def fetch():
    paddle.v2.dataset.common.download(URL_TRAIN, 'wmt14', MD5_TRAIN)
    paddle.v2.dataset.common.download(URL_MODEL, 'wmt14', MD5_MODEL)


def convert(path):
    """
    Converts dataset to recordio format
    """
    dict_size = 30000
    paddle.v2.dataset.common.convert(path,
                                     train(dict_size), 1000, "wmt14_train")
    paddle.v2.dataset.common.convert(path, test(dict_size), 1000, "wmt14_test")